813 research outputs found
Fast Decoders for Topological Quantum Codes
We present a family of algorithms, combining real-space renormalization
methods and belief propagation, to estimate the free energy of a topologically
ordered system in the presence of defects. Such an algorithm is needed to
preserve the quantum information stored in the ground space of a topologically
ordered system and to decode topological error-correcting codes. For a system
of linear size L, our algorithm runs in time log L compared to L^6 needed for
the minimum-weight perfect matching algorithm previously used in this context
and achieves a higher depolarizing error threshold.Comment: 4 pages, 4 figure
Energy Conservation Constraints on Multiplicity Correlations in QCD Jets
We compute analytically the effects of energy conservation on the
self-similar structure of parton correlations in QCD jets. The calculations are
performed both in the constant and running coupling cases. It is shown that the
corrections are phenomenologically sizeable. On a theoretical ground, energy
conservation constraints preserve the scaling properties of correlations in QCD
jets beyond the leading log approximation.Comment: 11 pages, latex, 5 figures, .tar.gz version avaliable on
ftp://www.inln.unice.fr
Emergence of a confined state in a weakly bent wire
In this paper we use a simple straightforward technique to investigate the
emergence of a bound state in a weakly bent wire. We show that the bend behaves
like an infinitely shallow potential well, and in the limit of small bending
angle and low energy the bend can be presented by a simple 1D delta function
potential.Comment: 4 pages, 3 Postscript figures (uses Revtex); added references and
rewritte
Generalised Factorial Moments and QCD Jets
{ In this paper we present a natural and comprehensive generalisation of the
standard factorial moments (\clFq) analysis of a multiplicity distribution.
The Generalised Factorial Moments are defined for all in the complex plane
and, as far as the negative part of its spectrum is concerned, could be useful
for the study of infrared structure of the Strong Interactions Theory of high
energy interactions (LEP multiplicity distribution under the ). The
QCD calculation of the Generalised Factorial Moments for negative is
performed in the double leading log accuracy and is compared to OPAL
experimental data. The role played by the infrared cut-off of the model is
discussed and illustrated with a Monte Carlo calculation. }Comment: 11pages 4 figures uuencode, LATEC, INLN 94/
Band spectra of rectangular graph superlattices
We consider rectangular graph superlattices of sides l1, l2 with the
wavefunction coupling at the junctions either of the delta type, when they are
continuous and the sum of their derivatives is proportional to the common value
at the junction with a coupling constant alpha, or the "delta-prime-S" type
with the roles of functions and derivatives reversed; the latter corresponds to
the situations where the junctions are realized by complicated geometric
scatterers. We show that the band spectra have a hidden fractal structure with
respect to the ratio theta := l1/l2. If the latter is an irrational badly
approximable by rationals, delta lattices have no gaps in the weak-coupling
case. We show that there is a quantization for the asymptotic critical values
of alpha at which new gap series open, and explain it in terms of
number-theoretic properties of theta. We also show how the irregularity is
manifested in terms of Fermi-surface dependence on energy, and possible
localization properties under influence of an external electric field.
KEYWORDS: Schroedinger operators, graphs, band spectra, fractals,
quasiperiodic systems, number-theoretic properties, contact interactions, delta
coupling, delta-prime coupling.Comment: 16 pages, LaTe
Raman Scattering Study of Ba-doped C60 with t1g States
Raman spectra are reported for Ba doped fullerides, BaxC60(x=3,4,and 6). The
lowest frequency Hg modes split into five components for Ba4C60 and Ba6C60 even
at room temperature, allowing us a quantitative analysis based on the
electron-phonon couping theory. For the superconducting Ba4C60, the density of
states at the Fermi energy was derived as 7 eV-1, while the total value of
electron-phonon coupling \lambda was found to be 1.0, which is comparable to
that of K3C60. The tangential Ag(2) mode, which is known as a sensitive probe
for the degree of charge transfer on C60 molecule, shows a remarkable shift
depending on the Ba concentration, being roughly consistent with the full
charge transfer from Ba to C60. An effect of hybridization between Ba and C60
\pi orbitals is also discussed.Comment: 15 pages, 6 figures submitted to Phys. Rev. B (December 1,1998
- …