2,387 research outputs found

    Topological band-order transition and quantum spin Hall edge engineering in functionalized X-Bi(111) (X = Ga, In, and Tl) bilayer

    Get PDF
    Functionalized X-Bi bilayers (X = Ga, In, and Tl) with halogens bonded on their both sides have been recently claimed to be the giant topological insulators due to the strong band inversion strengths. Employing the first-principles electronic structure calculation, we find the topological band order transition from the order p-p-s of the X-Bi bilayers with halogens on their both sides to the new order p-s-p of the bilayers (especially for X = Ga and In) with halogen on one side and hydrogen on the other side, where the asymmetric hydrogen bonding simulates the substrate. We further find that the p-s bulk band gap of the bilayer bearing the new order p-s-p sensitively depends on the electric field, which enables a meaningful engineering of the quantum spin Hall edge state by controlling the external electric field. © 2016 The Author(s).1

    Rectifying the Optical-Field-Induced Current in Dielectrics: Petahertz Diode

    Get PDF
    Investigating a theoretical model of the optical-field-induced current in dielectrics driven by strong few-cycle laser pulses, we propose an asymmetric conducting of the current by forming a heterojunction made of two distinct dielectrics with a low hole mass (m(h)(*) << m(e)(*)) and low electron mass (m(e)(*) << m(h)(*)), respectively. This proposition introduces the novel concept of a petahertz (10(15) Hz) diode to rectify the current in the petahertz domain, which should be a key ingredient for the electric signal manipulation of future light-wave electronics. Further, we suggest the candidate dielectrics for the heterojunction.open

    Acetaldehyde and hexanaldehyde from cultured white cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Noninvasive detection of innate immune function such as the accumulation of neutrophils remains a challenge in many areas of clinical medicine. We hypothesized that granulocytes could generate volatile organic compounds.</p> <p>Methods</p> <p>To begin to test this, we developed a bioreactor and analytical GC-MS system to accurately identify and quantify gases in trace concentrations (parts per billion) emitted solely from cell/media culture. A human promyelocytic leukemia cell line, HL60, frequently used to assess neutrophil function, was grown in serum-free medium.</p> <p>Results</p> <p>HL60 cells released acetaldehyde and hexanaldehyde in a time-dependent manner. The mean ± SD concentration of acetaldehyde in the headspace above the cultured cells following 4-, 24- and 48-h incubation was 157 ± 13 ppbv, 490 ± 99 ppbv, 698 ± 87 ppbv. For hexanaldehyde these values were 1 ± 0.3 ppbv, 8 ± 2 ppbv, and 11 ± 2 ppbv. In addition, our experimental system permitted us to identify confounding trace gas contaminants such as styrene.</p> <p>Conclusion</p> <p>This study demonstrates that human immune cells known to mimic the function of innate immune cells, like neutrophils, produce volatile gases that can be measured <it>in vitro </it>in trace amounts.</p

    Hydrogenation-induced atomic stripes on the 2H-MoS2 surface

    Get PDF
    We report that the hydrogenation of a single crystal 2H-MoS2 induces a novel-intermediate phase between 2H and 1T phases on its surface, i.e., the large-area, uniform, robust, and surface array of atomic stripes through the intralayer atomic-plane gliding. The total energy calculations confirm that the hydrogenation-induced atomic stripes are energetically most stable on the MoS2 surface between the semiconducting 2H and metallic 1T phase. Furthermore, the electronic states associated with the hydrogen ions, which is bonded to sulfur anions on both sides of the MoS2 surface layer, appear in the vicinity of the Fermi level (E-F) and reduces the band gap. This is promising in developing the monolayer-based field-effect transistor or vanishing the Schottky barrier for practical applicationsopen

    New agegraphic dark energy model with generalized uncertainty principle

    Full text link
    We investigate the new agegraphic dark energy models with generalized uncertainty principle (GUP). It turns out that although the GUP affects the early universe, it does not change the current and future dark energy-dominated universe significantly. Furthermore, this model could describe the matter-dominated universe in the past only when the parameter nn is chosen to be n>ncn>n_c, where the critical value determined to be nc=2.799531478n_c=2.799531478.Comment: 9 pages, 1 figure, version to appear in MPL

    Epidemiology of Insomnia in Korean Adults: Prevalence and Associated Factors

    Get PDF
    Background and Purpose Insomnia is a common complaint in adults. However, large epidemiologic studies of insomnia involving Asian populations are rarely reported. We performed an epidemiologic study of insomnia in a large Korean adult population. Methods A total of 5,000 subjects (2,470 men and 2,530 women) were interviewed by telephone. A representative sample of subjects aged 20 to 69 years was constituted according to a stratified, multistage random sampling method. Insomnia was defined as either any difficulty getting to sleep or getting back to sleep after waking in the night. Results More than one fifth (n=1,141, 22.8%) of the 5,000 subjects complained of insomnia, with the prevalence being significantly higher in women (25.3%) than in men (20.2%, P<0.001). Logistic regression revealed that the prevalence of insomnia increased significantly with age (p<0.001), being higher in those aged 60-69 years than in those aged 20-29 years (OR=2.368, 95% CI=1.762-3.182, p<0.001), and was lower in those with a monthly income of >4.5 million Korean won than in those with an income of <1.5 million Korean won (OR=0.689, 95% CI= 0.523-0.906,p<0.01). Conclusions Insomnia is a common complaint in Korean adults, and its prevalence is similar to that in adults in Western countries. J Clin Neurol 2009;5:20-23This work was supported by the research promoting grant from the Keimyung University Dongsan Medical Center in 2006

    Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication

    Get PDF
    Recent advances in three-dimensional bioprinting technology have led to various attempts in fabricating human tissue-like structures. However, current bioprinting technologies have limitations for creating native tissue-like structures. To resolve these issues, we developed a new pre-set extrusion bioprinting technique that can create heterogeneous, multicellular, and multimaterial structures simultaneously. The key to this ability lies in the use of a precursor cartridge that can stably preserve a multimaterial with a pre-defined configuration that can be simply embedded in a syringe-based printer head. The multimaterial can be printed and miniaturized through a micro-nozzle without conspicuous deformation according to the pre-defined configuration of the precursor cartridge. Using this system, we fabricated heterogeneous tissue-like structures such as spinal cords, hepatic lobule, blood vessels, and capillaries. We further obtained a heterogeneous patterned model that embeds HepG2 cells with endothelial cells in a hepatic lobule-like structure. In comparison with homogeneous and heterogeneous cell printing, the heterogeneous patterned model showed a well-organized hepatic lobule structure and higher enzyme activity of CYP3A4. Therefore, this pre-set extrusion bioprinting method could be widely used in the fabrication of a variety of artificial and functional tissues or organs

    Effects of 3D-printed polycaprolactone/��-tricalcium phosphate membranes on guided bone regeneration

    Get PDF
    This study was conducted to compare 3D-printed polycaprolactone (PCL) and polycaprolactone/��-tricalcium phosphate (PCL/��-TCP) membranes with a conventional commercial collagen membrane in terms of their abilities to facilitate guided bone regeneration (GBR). Fabricated membranes were tested for dry and wet mechanical properties. Fibroblasts and preosteoblasts were seeded into the membranes and rates and patterns of proliferation were analyzed using a kit-8 assay and by scanning electron microscopy. Osteogenic differentiation was verified by alizarin red S and alkaline phosphatase (ALP) staining. An in vivo experiment was performed using an alveolar bone defect beagle model, in which defects in three dogs were covered with different membranes. CT and histological analyses at eight weeks after surgery revealed that 3D-printed PCL/��-TCP membranes were more effective than 3D-printed PCL, and substantially better than conventional collagen membranes in terms of biocompatibility and bone regeneration and, thus, at facilitating GBR. ? 2017 by the authors. Licensee MDPI, Basel, Switzerland.118Ysciescopu

    Second-order corrections to noncommutative spacetime inflation

    Full text link
    We investigate how the uncertainty of noncommutative spacetime affects on inflation. For this purpose, the noncommutative parameter μ0\mu_0 is taken to be a zeroth order slow-roll parameter. We calculate the noncommutative power spectrum up to second order using the slow-roll expansion. We find corrections arisen from a change of the pivot scale and the presence of a variable noncommutative parameter, when comparing with the commutative power spectrum. The power-law inflation is chosen to obtain explicit forms for the power spectrum, spectral index, and running spectral index. In cases of the power spectrum and spectral index, the noncommutative effect of higher-order corrections compensates for a loss of higher-order corrections in the commutative case. However, for the running spectral index, all higher-order corrections to the commutative case always provide negative spectral indexes, which could explain the recent WMAP data.Comment: 15 pages, no figure, version published in PR

    Understanding and predicting seasonal-to-interannual climate variability - the producer perspective

    Get PDF
    Seasonal prediction is based on changes in the probability of weather statistics due to changes in slowly varying forcings such as sea surface temperature anomalies, most notably those associated with El Niňo–Southern Oscillation (ENSO). However, seasonal weather can be perturbed by many factors, and is very much influenced by internal variability of the atmosphere, so comprehensive models are needed to identify what can be predicted. The predictability and probabilistic nature of seasonal forecasts is explained with suitable examples. Current capabilities for seasonal prediction that have grown out of work done in the research community at both national and international levels are described. Dynamical seasonal prediction systems are operational or quasi-operational at a number of forecasting centres around the world. Requirements for seasonal prediction include initial conditions, particularly for the upper ocean but also other parts of the climate system; high quality models of the ocean-atmosphere-land system; and data for verification and calibration. The wider context of seasonal prediction and seamless forecasting is explained. Recommendations for the future of seasonal prediction and climate services are given
    corecore