864 research outputs found

    A new method for the estimation of variance matrix with prescribed zeros in nonlinear mixed effects models

    Get PDF
    We propose a new method for the Maximum Likelihood Estimator (MLE) of nonlinear mixed effects models when the variance matrix of Gaussian random effects has a prescribed pattern of zeros (PPZ). The method consists in coupling the recently developed Iterative Conditional Fitting (ICF) algorithm with the Expectation Maximization (EM) algorithm. It provides positive definite estimates for any sample size, and does not rely on any structural assumption on the PPZ. It can be easily adapted to many versions of EM.Comment: Accepted for publication in Statistics and Computin

    Environmental effects on progesterone profile measures of dairy cow fertility

    Get PDF
    Environmental effects on fertility measures early in lactation, such as the interval from calving to first luteal activity (CLA), proportion of samples with luteal activity during the first 60 days after calving (PLA) and interval to first ovulatory oestrus (OOE) were studied. In addition, traditional measurements of fertility, such as pregnancy to first insemination, number of inseminations per service period and interval from first to last insemination were studied as well as associations between the early and late measurements. Data were collected from an experimental herd during 15 years and included 1106 post-partum periods from 191 Swedish Holsteins and 325 Swedish Red and White dairy cows. Individual milk progesterone samples were taken twice a week until cyclicity and thereafter less frequently. First parity cows had 14.8 and 18.1 days longer CLA (LS-means difference) than second parity cows and older cows, respectively. Moreover, CLA was 10.5 days longer for cows that calved during the winter season compared with the summer season and 7.5 days longer for cows in tie-stalls than cows in loose-housing system. Cows treated for mastitis and lameness had 8.4 and 18.0 days longer CLA, respectively, compared with healthy cows. OOE was affected in the same way as CLA by the different environmental factors. PLA was a good indicator of CLA, and there was a high correlation (−0.69) between these two measurements. Treatment for lameness had a significant influence on all late fertility measurements, whereas housing was significant only for pregnancy to first insemination. All fertility traits were unfavourably associated with increased milk production. Regression of late fertility measurements on early fertility measurements had only a minor association with conception at first AI and interval from first to last AI for cows with conventional calving intervals, i.e. a 22 days later, CLA increased the interval from first to last insemination by 3.4 days. Early measurements had repeatabilities of 0.14–0.16, indicating a higher influence by the cow itself compared with late measurements, which had repeatabilities of 0.09–0.10. Our study shows that early fertility measurements have a possibility to be used in breeding for better fertility. To improve the early fertility of the cow, there are a number of important factors that have to be taken into account

    Fractal geometry of spin-glass models

    Full text link
    Stability and diversity are two key properties that living entities share with spin glasses, where they are manifested through the breaking of the phase space into many valleys or local minima connected by saddle points. The topology of the phase space can be conveniently condensed into a tree structure, akin to the biological phylogenetic trees, whose tips are the local minima and internal nodes are the lowest-energy saddles connecting those minima. For the infinite-range Ising spin glass with p-spin interactions, we show that the average size-frequency distribution of saddles obeys a power law ∌w−D \sim w^{-D}, where w=w(s) is the number of minima that can be connected through saddle s, and D is the fractal dimension of the phase space

    Linking Ligand-Induced Alterations in Androgen Receptor Structure to Differential Gene Expression: A First Step in the Rational Design of Selective Androgen Receptor Modulators

    Get PDF
    We have previously identified a family of novel androgen receptor (AR) ligands that, upon binding, enable AR to adopt structures distinct from that observed in the presence of canonical agonists. In this report, we describe the use of these compounds to establish a relationship between AR structure and biological activity with a view to defining a rational approach with which to identify useful selective AR modulators. To this end, we used combinatorial peptide phage display coupled with molecular dynamic structure analysis to identify the surfaces on AR that are exposed specifically in the presence of selected AR ligands. Subsequently, we used a DNA microarray analysis to demonstrate that differently conformed receptors facilitate distinct patterns of gene expression in LNCaP cells. Interestingly, we observed a complete overlap in the identity of genes expressed after treatment with mechanistically distinct AR ligands. However, it was differences in the kinetics of gene regulation that distinguished these compounds. Follow-up studies, in cell-based assays of AR action, confirmed the importance of these alterations in gene expression. Together, these studies demonstrate an important link between AR structure, gene expression, and biological outcome. This relationship provides a firm underpinning for mechanism-based screens aimed at identifying SARMs with useful clinical profiles

    Reassessing Design and Analysis of two-Colour Microarray Experiments Using Mixed Effects Models

    Get PDF
    Gene expression microarray studies have led to interesting experimental design and statistical analysis challenges. The comparison of expression profiles across populations is one of the most common objectives of microarray experiments. In this manuscript we review some issues regarding design and statistical analysis for two-colour microarray platforms using mixed linear models, with special attention directed towards the different hierarchical levels of replication and the consequent effect on the use of appropriate error terms for comparing experimental groups. We examine the traditional analysis of variance (ANOVA) models proposed for microarray data and their extensions to hierarchically replicated experiments. In addition, we discuss a mixed model methodology for power and efficiency calculations of different microarray experimental designs

    An R 2 statistic for fixed effects in the linear mixed model

    Get PDF
    Statisticians most often use the linear mixed model to analyze Gaussian longitudinal data. The value and familiarity of the R2 statistic in the linear univariate model naturally creates great interest in extending it to the linear mixed model. We define and describe how to compute a model R2 statistic for the linear mixed model by using only a single model. The proposed R2 statistic measures multivariate association between the repeated outcomes and the fixed effects in the linear mixed model. The R2 statistic arises as a 1–1 function of an appropriate F statistic for testing all fixed effects (except typically the intercept) in a full model. The statistic compares the full model to a null model with all fixed effects deleted (except typically the intercept) while retaining exactly the same covariance structure. Furthermore, the R2 statistic leads immediately to a natural definition of a partial R2 statistic. A mixed model in which ethnicity gives a very small p-value as a longitudinal predictor of blood pressure compellingly illustrates the value of the statistic. In sharp contrast to the extreme p-value, a very small R2, a measure of statistical and scientific importance, indicates that ethnicity has an almost negligible association with the repeated blood pressure outcomes for the study

    The DLV System for Knowledge Representation and Reasoning

    Full text link
    This paper presents the DLV system, which is widely considered the state-of-the-art implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, function-free disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to Δ3P\Delta^P_3-complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of DLV, and by deriving new complexity results we chart a complete picture of the complexity of this language and important fragments thereof. Furthermore, we illustrate the general architecture of the DLV system which has been influenced by these results. As for applications, we overview application front-ends which have been developed on top of DLV to solve specific knowledge representation tasks, and we briefly describe the main international projects investigating the potential of the system for industrial exploitation. Finally, we report about thorough experimentation and benchmarking, which has been carried out to assess the efficiency of the system. The experimental results confirm the solidity of DLV and highlight its potential for emerging application areas like knowledge management and information integration.Comment: 56 pages, 9 figures, 6 table
    • 

    corecore