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SUMMARY
Statisticians most often use the linear mixed model to analyze Gaussian longitudinal data. The
value and familiarity of the R2 statistic in the linear univariate model naturally creates great
interest in extending it to the linear mixed model. We define and describe how to compute a model
R2 statistic for the linear mixed model by using only a single model. The proposed R2 statistic
measures multivariate association between the repeated outcomes and the fixed effects in the
linear mixed model. The R2 statistic arises as a 1–1 function of an appropriate F statistic for
testing all fixed effects (except typically the intercept) in a full model. The statistic compares the
full model to a null model with all fixed effects deleted (except typically the intercept) while
retaining exactly the same covariance structure. Furthermore, the R2 statistic leads immediately to
a natural definition of a partial R2 statistic. A mixed model in which ethnicity gives a very small p-
value as a longitudinal predictor of blood pressure compellingly illustrates the value of the
statistic. In sharp contrast to the extreme p-value, a very small R2, a measure of statistical and
scientific importance, indicates that ethnicity has an almost negligible association with the
repeated blood pressure outcomes for the study.
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1. Introduction
In the linear univariate model, the sample squared multiple correlation coefficient, R2,
measures the maximum overall linear association of a single dependent variable with several
independent variables. In the univariate model, R2 corresponds to comparing two models [1,
Chapter 6, Sections 6.9–6.11]: 1. a full model that consists of p−1 independent predictors
and an intercept; 2. a null model that has only the intercept. It also measures the overall
linear association of one (dependent) variable Y with several other (independent) variables
X1, X2, …, Xp−1, which corresponds to adding p−1 predictors to an intercept-only model.
Most linear regression and ANOVA software packages provide the model (overall) R2.
However, little attention has been given to developing an R2 statistic for the linear mixed
model, the most widely used statistical tool for analyzing Gaussian longitudinal data.
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The linear mixed model explicitly specifies not only the mean structure, but also the
covariance structure. Hence three types of model comparisons can occur. I) Compare mean
models with the same covariance structure. Nested mean models are the most common. II)
Compare covariance models with the same mean structure. Two linear mixed models may
be nested or nonnested in the covariance models. III) Compare linear mixed models with
different mean and different covariance structures. Consequently any definition of an R2

statistic for the linear mixed model must account for the distinction between the proportion
of variation in the response explained by the fixed effects (in the mean model) and the
proportion explained by the random effects (in the covariance model). The same distinction
arises in measuring the degree of association between the repeated outcomes and the fixed
effects. However, measuring association for random effects seems to require a distinct
treatment. Here we describe an R2 only for item I, i.e., comparing nested mean models with
the same covariance structure.

Our focused approach aligns with earlier work in the area. The differences between fixed
(mean) and random (covariance) effects led Snijders and Bosker [2] to propose distinct R2

statistics for fixed and random effects in terms of the corresponding proportions of modeled
variances. Kramer [3] concluded that “Different problems necessarily emphasize the
importance of different parts of a model – this is a fundamental component to modeling a
process and cannot be resolved mathematically. Thus, there can be no general definition of
R2 for mixed models that will cover every model, which is problematic for software
developers.”

We use an approximate F statistic for a Wald test of fixed effects to define an R2 statistic for
fixed effects in the linear mixed model. The R2 statistic measures multivariate association
between the repeated outcomes and the fixed effects in the linear mixed model. Defining R2

in terms of an F statistic for fixed effects allows computing it with results from fitting only a
single model, i.e., there is no need to explicitly fit a null model. The approach necessarily
assumes the covariance structure holds for both the model of interest and the implied null
model.

2. The Linear Mixed Model
With N independent sampling units (often persons in practice), the linear mixed model for
person i may be written [4, notation in 5, ch.5]

(1)

Here, yi is a pi×1 vector of observations on person i; Xi is a pi×q known, constant design
matrix for person i, with full column rank q while β is a q×1 vector of unknown, constant,
population parameters. Also Zi is a pi×m known, constant design matrix with rank m for
person i corresponding to the m×1 vector of unknown random effects di, while ei is a pi×1
vector of unknown random errors. Gaussian di and ei are independent with mean 0 and

(2)

Here (·) is the covariance operator, while both Σdi(τd) and Σei(τe) are positive-definite,
symmetric covariance matrices. Therefore (yi) may be written

Edwards et al. Page 2

Stat Med. Author manuscript; available in PMC 2009 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



. We assume that Σi can be characterized by a finite set of
parameters represented by an r×1 vector τ which consists of the unique parameters in τd and

τe. Throughout .

We will also need to refer to a stacked data formulation of model (1) given by

(3)

with , and

. Here ds ~ Nq[0, Σdi(τd)⊗IN] and es ~ n(0, Σes) for Σes = diag[Σe1(τe), ···,
ΣeN(τe)]. In turn ys ~ n(Xsβ, Σs) with Σs = (ys) = diag(Σ1, ···, ΣN).

The advantage of reducing bias in covariance estimation has made restricted maximum
likelihood (REML) estimation very popular for the linear mixed model. Our focus on
variance estimates means that all parameter estimates in this paper are done using REML.
However, the formulations also apply to computations based on maximum likelihood
estimates.

3. A Review of R2 Statistics for the Linear Mixed Model
The popularity of the R2 statistic in the linear univariate model has led to direct analogs
being proposed for the linear mixed model that measure the proportionate reduction in
residual variation explained by the model. We provide a brief review of some of the R2

statistics.

The choice of a null model plays an essential role in all definitions of R2 statistics for the
linear mixed model because it affects the interpretation and properties of R2. Two null
models have been discussed most often: 1) an intercept-only model in the fixed effects, i.e.,
for all persons in model (1) mentioned earlier, β = β0, Xi = 1pi, a pi×1 vector of 1’s, and di =
0; 2) an intercept-only model in both the fixed and random effects, i.e., β = β0, Xi = 1pi, di =
d0i, and Zi = 1pi. However, other choices for the null model are possible, depending on the
application, interpretation, and scientific question of interest. Guidelines for null model
selection do not exist. As described in Section 4, evaluating fixed effects alone corresponds
to comparing nested mean models and leads us to prefer a different null model.

Considering the linear mixed model as a random effects hierarchical two-level model,
Snijders and Bosker [2] proposed an R2 statistic for the fixed and random effects. The two-
level model may be expressed in scalar form as

(4)

where h ranges from 0 to m and Z0ij = 1 for all i, j. Level 1 variables describe within person
variation while level 2 variables describe between person variation. For longitudinal data,
level-1 variables are indexed by j (within-person observations) and level-2 variables are
indexed by i (between-person observations). Snijders and Bosker argued that the
proportional reduction in variance components does not represent the joint importance of the
predictor variables. The same authors interpreted their proposed R2 statistics as the
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proportion of “modeled variance”, as opposed to “explained variance”. They argued that the
principle of proportional reduction of prediction error gives the best way to define measures
of modeled or explained variance.

Snijders and Bosker [2] defined R2 for fixed effects (level-2 variables) in the linear mixed
model as

(5)

where ȳi· is the mean for person i across j and X̄i· is the mean vector of predictor variables
across j ∈ {1, 2, ···, pi}. The quantities (ȳi· − X̄i·β) and (ȳi·) are the (estimated) mean
squared prediction error for the model of interest and the null model, respectively. As for
several of the R2 statistics discussed earlier, a very important assumption is that (yij) is the
same for all i, j (homogeneity of variance) and that Σei(τe) = (ei) = σ2Ipi (within-person
covariance) for all i. The null model contains only an intercept in the fixed and the random
effects. The assumption restricts the null model covariance matrix within a person, (yi) for
model (1), to compound symmetry, which clearly may not be appropriate for a wide array of

longitudinal and other types of data. Here , where  is the estimated
variance of the random intercepts. For balanced data, pi = n* for all i. For unbalanced data,
Snijders and Bosker [2] suggested choosing n* as “either a value deemed a priori as being

representative, or the harmonic mean, defined by .” The estimated variance 
(ȳi· −X̄i·β), assuming predictor variables are random variables over some population, is
given by

(6)

with σ ̂hk the hk-th element of the m×m estimated random effects covariance matrix Σ̂di(τd).

The  statistic has characteristics that help to highlight how an R2 statistic for the linear

mixed model can differ from R2 for the linear univariate model. First,  may decrease
when more predictors are added. As Snijders and Bosker [2] explain, this is a property of the

sample estimate R2 ( ). The true population R2, under suitable conditions, should not
decrease. Secondly, the statistic can be negative. In comparison, both the true population and
estimated R2 for the linear univariate model do not decrease as more predictors are added
and are nonnegative [6,7]. Snijders and Bosker [2] explained that the characteristics may
reflect incorrect specification of the fixed-effect portion of the model. Hence they argued
that the characteristics can help diagnose model misspecification.

Vonesh and Chinchilli [8, Chap. 8, pp 420–421] described a goodness-of-fit measure for
generalized linear mixed models and interpreted it as the proportionate reduction in residual
variation explained by the model. For their statistic, ŷi and ŷi0 estimate yi under the full
model of interest and null model, respectively. In turn  and

 give weighted distance values in the spirit of Mahalanobis
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distances for the full and null model respectively. The distances depend on a matrix Vi,
which must be positive definite but does not necessarily equal the covariance matrix for
person i (which would make  and  Mahalanobis distances). Relative to the null, the
full model reduces residual variation in the response of person i by the proportion

(7)

Overall the model reduces residual variation by the weighted average

(8)

where  and V = {V1, ···, VN}. Choices of an appropriate null model and Vi

crucially affect the definition of . Vonesh and Chinchilli [8] suggested using Σei(τe)
= (ei) or Σei0(τe) =  (ei0) for Vi. Either definition implicitly ignores a major component of

the variance of yi, namely . Also, by definition, if the random effects
covariance matrix model differs between the null and the full model, then the structure of 
(yi)and (yi0) differ. Vonesh and Chinchilli [8, Chap. 8, p 421] concluded that choosing Vi =
Σei0(τe) meets the goal of having a goodness-of-fit measure that can be compared across
different hypothesized models since the null model and Σei0(τe) remain fixed. However, it

should be noted that  can be defined using , thereby

extending  to the case where the model of interest and ull model have the same
covariance structure.

Vonesh and Chinchilli [8, Chap. 8, pp 422–424] discussed the interpretations associated
with choosing either one of the null models. If the null model contains only an intercept in

the fixed effects and no random effects, then  measures the proportionate reduction in
residual ariation explained by a set of fixed effects. However, using such a null model for
longitudinal data ignores the correlation between observations and essentially uses a
misspecified model with Vi = Σei(τe) = σ2Ipi, with σ2 an unknown constant. Consequently

(9)

where yi is the observed response vector for person i, ȳ is the (scalar) grand mean of the yij,
ŷi is the person’s predicted response vector, and 1pi is an pi×1 vector of 1’s. A marginal view
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implies ŷi = Xiβ ̂ and leads to interpreting  as the proportionate reduction in residual
variation explained by the modeled response of the average person. A conditional view

implies ŷi = Xiβ ̂ + Zi d̂i and leads to interpreting  as the proportionate reduction in
residual variation explained by each person’s modeled response. The fact that the marginal

view models the average person (ŷi = Xiβ ̂) leads to the term average model . Vonesh and
Chinchilli [8, Chap. 8, pp 422] described it as the “usual coefficient of determination one
would get if one were to ignore the repeated measures aspect of the data.” Since we focus on

R2 for fixed effects, in computing , we consider only the marginal view and hence
assume ŷi = Xiβ ̂.

Xu [9] also presented an R2 statistic as the proportionate reduction in residual variation
explained by the model. Under model (1), Xu [9] restricts the definition of the residual
variance to the variation not explained by the covariates for (yij|X, d) =  (eij) = σ2, with σ2

an unknown constant. However, as observed for , the assumption ignores a major

component of the variance of yi, namely . Xu [9] defined the
proportionate reduction in residual variation explained by the fixed effects only as

(10)

where  for a null model containing only a fixed-effect intercept and no random

effects, and all observations assumed to be independent. As observed for  in relation to
equation (9), using such a null model for longitudinal data ignores the correlation between
observations and essentially uses a misspecified model. Also, by Xu’s definition, if the
random effects covariance matrix for the model of interest differs from that of the null
model, then (yi) will differ from (yi0).

Alternatively, Xu [9] proposed the proportionate reduction defined by each person’s
modeled response as

(11)

where  for a null model with an intercept-only model in both the fixed and
random effects. Effectively Xu [9] defined the R2 statistic to be the proportionate reduction
in , the null model within-unit error variance for homogeneous yij, due to the fixed-effect
predictor variables X and random effects Z from the model of interest. However, Snijders
and Bosker [2] suggested that R2 should estimate the proportionate reduction in , the
null model variance for homogeneous yij (  indicates the variance of random intercepts

from the null model). Xu’s statistic for the linear mixed model, denoted here as ,
corresponds to the parameter in (10):
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(12)

Simply replacing  with  in (12) gives Xu’s statistic corresponding to (11). Due to the
scientific question of interest and resulting interpretation, Xu [9] chose an intercept-only
model in both the fixed and random effects. As mentioned earlier, Vonesh and Chinchilli [8]
suggested a null model with only an intercept in the fixed effects and no random effects
gives one reasonable choice in equation (8). The difference helps illustrates the idea that the
choice of null models may differ depending on the scientific question of interest.

Zheng [10] defined estimates of the proportionate reduction in deviance for generalized
linear models for longitudinal data. For linear mixed models, Zheng’s measures reduce to
Vonesh and Chinchilli’s statistics. Also, Gelman and Pardoe [11] presented Bayesian R2

statistics that are equivalent in form to Xu’s.

In the context of maximum likelihood estimation, Kramer [3] proposed the use of two
existing R2 statistics, including a modified R2 by Buse [12],

(13)

where ŷi = Xiβ ̂ + Zi d̂i and (ei) = Σ̂ei(τe). Choosing Vi = (ei) in the Vonesh and Chinchilli

form  gives the same result. Kramer [3] also recommended a measure based on a
likelihood ratio test proposed by Magee [13],

(14)

for L(θ; y) the log-likelihood of the model of interest and L(θ0; y) the log-likelihood of the
null model with only an intercept in the fixed effects. If θ and θ0 differ only in fixed effects,

then two models have the same covariance structure. The two statistics  and  give the
same results for ordinary regression but may differ for the linear mixed model. The
individual and relative performances of the R2 statistics require further research [3]. In
contrast to Kramer [3], we focus on REML estimation. Verbeke and Molenberghs [14, p 63)
illustrated how computing a difference in log-likelihoods for REML, in contrast to the same
calculation for ML, does not provide a valid test statistic for fixed effects. By extension,

basing  on REML estimates would not be valid.

Orelien and Edwards [15] investigated the performance of selected R2 statistics for the linear

mixed model, including , and Zheng’s [10] statistic. The authors conducted
simulations to assess the ability of the R2 statistics to discriminate between the correct model
and one with important fixed-effects covariates deleted. Statistics involving the residuals
were unable to discriminate adequately if the computation of the predicted values for the
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residuals included the random effects (conditional R2). However, if the random effects were
excluded from the computation of the predicted values that lead to the residuals, marginal R2

statistics were able to select the correct model. The R2 statistic proposed by Xu [9]
performed poorly due to giving little variation in value between a full model and a reduced
model.

4. An R2 Statistic for Fixed Effects in the Linear Mixed Model
4.1 Model R2

As discussed in section 1, in a linear univariate model R2 corresponds to comparing a full
model to a null model which contains only the intercept. Similarly for our R2 statistic
intended to evaluate fixed effects (mean differences), we specify a null model with only the
intercept in the fixed effects. To compare nested mean models, we differ from other authors
in requiring the same covariance structure for both the null model and the model of interest.

We believe an R2 statistic for the linear mixed model should generalize results from the
univariate model, y = Xβ+e. In linear univariate regression the R2 statistic for measuring the
overall linear association of one (dependent) variable Y with several other (independent)
variables {X1, X2, …, Xq−1} reflects introducing q − 1 predictors to an intercept-only model:

(15)

Here SSTc indicates the corrected total sum of squares, and SSE (β0, β1, ···, βq−1} the error
sum of squares of the model of interest [1, Chapter 11, Section 11.4]. In turn, we can express

 in terms of an F statistic for the full model as follows:

(16)

for Fq the test statistic of corrected overall regression. Here N is the number of independent
sampling units, while  = N − rank(X) gives the denominator degrees of freedom. As
mentioned in the introduction, R2 (and hence Fq) corresponds to comparing two models: 1. a
full model containing q − 1 independent predictors and an intercept; 2. a null model that has
only the intercept. Both models have the same covariance structure, (y) = (e) = σ2IN.

We extend (16) to the linear mixed model by interpreting Fq as an approximate F statistic
for a Wald test of the appropriate set of model coefficients. The most common situation
involves a model including an intercept and a hypothesis excluding the intercept, giving H0:
Cβ = 0 for C = [0(q−1)×1Iq−1] of rank q − 1. If we let θ = Cβ, then

(17)

Approximations for denominator degrees of freedom include the Kenward-Roger,
Satterthwaithe, and residual methods [16, Chapter 46]. For any choice we have
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(18)

where  denotes our proposed R2 statistic. Solving for  yields

(19)

The F (β ̂, Σ̂) statistic used for  corresponds to a test of the null hypothesis H0: β1 = β2 = ···

= βq−1 = 0. Using the F(β ̂, Σ̂) statistic allows computing  using a single model fit for the
model of interest, rather than needing to fit a full model and a null model.

As stated previously, different choices exist for the approximate denominator degrees of
freedom (d.f.), , in the F(β ̂, Σ̂) statistic for fixed effects. The natural extension of the
univariate linear model uses the residual degrees of freedom, with  = n − rank(X), where n
is the total number of observations. Under REML estimation, the Kenward-Roger F [19]
apparently provides the most accurate inference in small samples, while the Satterthwaite
method also does well [20].

Not surprisingly, analytic results in the remainder of the present section and numerical

results in section 5 support using the Kenward-Roger or Satterthwaite F to define . Just as
for inference, the choice of residual degrees of freedom can substantially affect the value of

.

4.2 Choice of null model
As for the R2 statistics reviewed in section 3, the choice of the null model plays a central

role in defining . We consider a model that includes an intercept in Xi, the fixed effects
design, and may or may not include an intercept in Zi (the random effects design). The F(β ̂,
Σ̂) statistic uses a single model fit to compare two models differing by the presence or
absence of all fixed effect predictors except the intercept. With Xi = [1i x1,i ··· xq−1,i] and β =
[β0 β1 ··· βq−1]′,

1. Model of Interest yi = Xiβ + Zidi + ei

2. Null Model yi = 1iβ0 + Zidi + ei.

The null model we choose has only an intercept in the fixed effects while the covariance
structure, (yi), coincides with the structure of the model of interest. Therefore the two
models assume the same error covariance model (ei), random effects design Zi, and

random effects covariance (di). The  statistic reflects our belief that the covariance
model for yi should remain the same when the comparison centers on fixed effects. A model
of interest with (yi) different from the null model gives a measure of association between
the repeated outcomes and the fixed effects due to changing both the fixed effects and
covariance structures. The approach applies in the context of any mixed model covariance

structure. In contrast, all of the R2 statistics discussed in section 3, with the exception of ,
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only allow using Σei(τe) = σ2Ipi for the model of interest and  for the null
model. For longitudinal data one may want to define Σei(τe) to have heterogeneous

variances, such as an unstructured covariance or a heterogeneous AR(1). The ability of  to
accommodate the full range of null model random effects and within-person error
covariances provides a substantial advantage over all previously proposed R2 statistics.

Although we have defined  in terms of comparing a null model with only an intercept in

the fixed effects to a larger model also containing an intercept,  generalizes naturally in
two other settings. Some models, such as those based on cell-mean coding, do not include an
intercept but still spans an intercept in the sense that a q×1 vector t exists such that Xt = 1q.

Computing  (with an appropriate choice of contrast matrix, C, which depends on the
specific coding) for such models implicitly uses the intercept only model as the null model,
and therefore requires no additional work. In other cases the model neither includes nor
spans an intercept. Models that do not span (and therefore also do not include) an intercept
would use yi = Zidi + ei as the null model and hence C = Iq. Again (ei), Zi, and (di)
coincide with the structures of the full model, which insures (yi) coincides. Muller and
Fetterman [1, Chapters 4–6] provided detailed introductions to the role of the intercept in
model definition, interpretation, testing, and correlation in the special case context of the
univariate linear model.

4.3 Interpretation of R2 and what it estimates; special case connections to multivariate
models

What does  estimate and how do we to interpret it? Naturally  reduces to the standard
R2 statistic for the special case of a linear univariate regression model since its definition
generalizes the univariate definition. The linear univariate model R2 measures the amount of
overall linear association of one response variable with q−1 predictor variables. The
description corresponds to interpreting  in terms of the geometry of the q
dimensional scattergram for the data standardized to means of zero and standard deviations
of one, while accounting for correlations among predictors. In turn, the linear mixed model

uses a univariate approach to a multivariate linear model. The Wald statistic defining 
standardizes the response data by using (approximate) weighted least squares based on the
estimated covariance among the repeated measures, while also accounting for correlations

among predictors. By extension then,  measures multivariate association between the
response variable (repeated measures of a single outcome) and the predictor variables (fixed
effects) in the linear mixed model.

Hence to understand what  estimates we must also turn to the multivariate linear model,

(20)

Rows of Y (N×p), X (N×q), and E correspond to N persons (independent sampling units),
columns of Y, B (q×p) and E correspond to time, while columns of design matrix X and
rows of fixed, unknown B correspond to predictors. We assume N > rank(X) independent
rows of E, with rowi (E)′ ~ p(0, Σ). The general linear hypothesis, H0: θ = θ0, tests θ =
CBU (a×b), for fixed and known C, U, and θ0. Here C (a×q) gives contrasts between person
and U (p×b) gives contrasts within person. Muller and Stewart [5] provided details,
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including explicit representations of any such model as a general linear mixed model. The
following discussion of measures of multivariate association draws from the same source.

In contrast to the univariate setting, no single multivariate test statistic satisfies all of the
standard optimality criteria in the most complex conditions (s = min(a, b) > 1). The three
principles of union-intersection, likelihood, and substitution give four distinct and
commonly used multivariate test statistics. Each distinct multivariate test statistic leads to a
distinct measure of association. Measures of multivariate association generalize the concept
of a squared multiple correlation corresponding to the hypothesis H0: θ = θ0.

One particular measure of multivariate association has special relevance for . The
Hotelling-Lawley-Trace (HLT) test statistic, sometimes called the ANOVA analog statistic,
corresponds to a measure of multivariate association given by

(21)

where s = min(a, b). Also 0 ≤ η ̂ ≤ 1, with 0 reflecting no association and 1 perfect
association. For the multivariate general linear hypothesis H0: θ = θ0

(22)

with  the eigenvalues of (θ̂−θ0)′M−1(θ̂−θ0)[(N−r)U′Σ̂U]−1 while M = C(X
′X)−C′. Here { } estimate the (generalized) squared canonical correlations, . Like the
Wald statistic for the general linear mixed model, HLT was defined by the substitution
principle. The distribution of the HLT statistic (times a constant) is approximated by that of
an F with denominator degrees of freedom given by

(23)

Special cases give Hotelling T2 statistics and correspond to exact noncentral F distributions,
while general cases allow accurate approximations by noncentral F distributions.

Multivariate and mixed linear model theory overlap in many ways. Vonesh and Chinchilli
[8, Chapter 6, p 236] showed that for complete and balanced data, the random coefficient
growth curve model, a particular form of the linear mixed model, can be written in terms of
the generalized multivariate analysis of variance (GMANOVA) model. In practice,
GMANOVA can be implemented with careful use of the theory associated with the
multivariate model in (20), [5, Chapters 4, 13, 17, 22].

In defining  for fixed effects in the linear mixed model, we see that the Wald F(β ̂, Σ̂)
approximation plays the role of the F approximation for the HLT statistic given by (20).
Both assess the Mahalanobis distance of the parameter vector from the alternative location
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to the null. The fact that F(β ̂, Σ̂) ≥ 0 insures , with  indicating no

multivariate association between y and X. On the other hand, as  nears 1, then the

multivariate association between y and X becomes perfect. Hence  estimates the
association between y and X controlled by the linear mixed model hypothesis H0: θ = 0, i.e.,
H0: β1 = β2 = ··· = βq−1 = 0.

The description just given leads to a very appealing result in the special case with a
multivariate model that is expressed as linear mixed model and a linear mixed model
hypothesis that coincides exactly with a multivariate linear hypothesis. In Lemma 1 in the

Appendix we prove that in such special cases the  statistic reduces exactly to η ̂
corresponding to HLT (as in equation 21). If the models and hypotheses do not coincide,

then  and η ̂ need not coincide.

4.4 Partial R2

Testing H0: βj = 0 for j ∈ {1, ···, q−1}, i.e., testing a particular fixed effect regression
coefficient, gives a partial F statistic. It measures the marginal contribution of Xk when all
the other predictors have already been included in the model. Just as for overall regression,

the partial F in the linear mixed model defines a partial  by way of equation (19). It should
be noted that none of the R2 statistics discussed in section 3 lead to defining a partial R2

statistic.

More generally, for fixed effects, any test of a single variable, a group of variables, or a

general linear contrast, corresponds to an F statistic and hence provides a corresponding .
The concept applies to both added-in-order and added-last tests. The validity of the claim for
the general linear contrast rests on the proof of Lemma 2 in the Appendix.

Muller and Fetterman [1, Chapters 5–6] provided detailed introductions to the variety of
partial correlations and associated tests in the special case context of the univariate linear
model. The special case results and the nature of the tests involved make it easy to deduce

that the partial  described here can more precisely be called a semi-partial, as distinct from
a full partial. As in the univariate model, the process directly gives semi-partial correlations
which assess the importance of the parameters tested. A semi-partial correlation assesses the
relationship of a subset of predictors with the response for the subset of predictors (but not
the response) adjusted for other predictors in the model. In contrast, a full partial correlation
assesses the relationship of a subset of predictors with the response for the subset of
predictors and the response adjusted for other predictors in the model. As for univariate
models, computing full partial correlations for the linear mixed model would require more
than one step.

4.5 Analytic Results Recommend Kenward-Roger F and Degrees of Freedom in Defining 
As results in section 4 illustrate in many ways, the approximate denominator degrees of
freedom play an important role in the interpretation of the Wald F(β ̂, Σ̂) statistic for fixed
effects. Although it may seem natural to use the residual degrees of freedom, at the present
time we recommend the Kenward-Roger approach or perhaps the Satterthwaite approach.

Their superior accuracy in inference [20] leads to accurately mapping  into the
multivariate measure of association when the latter exists. Using Kenward-Roger best
maintains the highly desirable correspondence between inference about regression
coefficients, F statistics, and correlations seen in univariate and multivariate models.
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5. Example Computations and Interpretations

5.1 Example 1, Dental Data Comparison of Mixed Models with 

We use a well-known example from Potthoff and Roy [21] to demonstrate results for 
proposed in section 4. The data come from an orthodontic study with 27 children, 16 boys
and 11 girls. For each child, the distance (mm) from the center of the pituitary to the
pterygomaxillary fissure was measured at ages 8, 10, 12, and 14 years. The objectives were
to determine whether, on the average over time, distances are larger for boys than for girls
and whether, on the average over time, the rate of change of the distance is similar for boys
and girls. The interested reader may refer to Zheng [10] and Orelien and Edwards [15] for

the performance of  with the dental data.

For the example, we fitted linear mixed models with three different fixed-effect structures
(in addition to a fixed intercept) using REML estimation: (I) a model with continuous age
effect only; (II) a model with linear Age and Gender effect; (III) a model with linear Age,
Gender, and their interaction. The null model for expected values contains only an intercept,
while the covariance structure remains the same as for the model of interest. We considered

three different covariance structures: (1) random intercepts,  (scalar), and
Σei(τe) = σ2Ini; (2) random intercepts and slopes with unstructured covariance, Σdi(τd) (2×2),
and Σei(τe) = σ2Ini; (3) random intercepts and slopes with unstructured covariance, Σdi(τd)

(2×2), and  for boys and  for girls.

Table 1 provides the estimates, standard errors, and p-values for fixed effects in Models I, II,
and III described above, as well as covariance parameter estimates. For covariance
structures 2 and 3, the estimated variances of the random intercepts and slopes are  and

, respectively, and the correlation is given by ρ̂. REML estimates were used, with fixed
effect standard errors computed via a method in Kackar and Harville [17] and Prasad and
Rao [18]. In turn p-values used the Kenward-Roger F and associated denominator degrees
of freedom.

Recall that different choices exist for the approximate denominator degrees of freedom, ,

for the F(β ̂, Σ̂) statistic for fixed effects. Table 2 provides  as well as F statistics and
denominator degrees of freedom using the residual, Kenward-Roger, Contain, and
Satterthwaite approximations [16, Chapter 46]. In Table 2 the Kenward-Roger results vary

from  to 0.84. In comparison, the Residual F and denominator degrees of freedom

values range from  to 0.56, which is in most cases much lower than  using
Kenward-Roger. The denominator degrees of freedom for the Residual F treats the
observations as if they are independent and therefore the degrees of freedom are much

larger, which deflates .

Results in Table 2 demonstrate that  using Kenward-Roger (or Contain or Satterhwaite)
can decrease when adding a fixed effect. For linear mixed models, Snijders and Bosker
(1994) argued that most fixed effect predictors have both within-group and between-group
variability. As such, adding a predictor may increase estimated residual variance and hence
cause the estimated R2 for the linear mixed model to decrease. Snijders and Bosker (1994)
also stated that “We would like to stress that the possibility, discussed above, of an increase
of residual variance estimates when predictor variables are added is not a consequence of
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misspecification. The model without and the model with the extra predictor variable could
both be valid statistical models for the observations at hand (although the latter model would
be better in the sense of having a greater explanatory power).” For example, Table 1 shows
that adding a fixed effect for any of the covariance structures impacts the estimate of the
random effects variance. The most dramatic affect can be seen for covariance model 2 where
adding gender inflates the variance of the random intercept from 5.4 to nearly 8 and as a
result increases the variance of the response. It also affects the correlation between random
intercept and slope, increasing in absolute value from 0.61 to 0.77. To a lesser extent this is

also true for covariance model 3. In turn, this affects the value of the  measures using the
Kenward-Roger, Satterwaithe, and Contain methods which compute the denominator
degrees of freedom using estimates of parameters. In the linear univariate and multivariate
models, adding a fixed effect can either explain more of the variance or add no additional
explaination. Hence, for the linear univariate and mulitvariate models, the true population R2

and estimated R2 increase or remain the same. However, unlike the linear univariate and
multivariate models, adding a fixed effect in the linear mixed model may actually increase

the overall variance estimate as illustrated above. In such cases,  is interpreted as
indicating a decrease in measure of association possibly due to either misspecification of the
“full” model and/or of sampling variation resulting in changes to estimates of variance
components.

5.2 Example 1, Dental Data Comparison of Mixed and Multivariate Models with 
The nature of the dental data allows defining a multivariate model which corresponds to a
mixed model with an unstructured covariance matrix. Using the approach referenced in the
proof of Lemma 1 in the appendix, a growth curve analysis can be formulated in terms of
the GMANOVA model [21] as

(24)

where Y and E are 27×4. The between subject cell-mean design matrix XM (27×2)
represents the two groups, boys and girls. The matrix B (2×4) contains unknown parameters
for intercepts, linear, quadratic, and cubic orthogonal polynomials for both boys and girls.
The within-subject design matrix T (4×4) consists of zero order, linear, quadratic, and cubic
orthonormal polynomials generated from the natural cubic polynomial matrix P (4×4) with
row k + 1 being pk = [8k 10k 12k 14k]. Using a square T allows converting the GMANOVA
model into a MANOVA model by multiplying both sides of (24) by T−1 = T′. If Ys = YT′
and Es = ET′, the transformation gives the equivalent MANOVA model as

(25)

Using equation 12.6 in Muller and Stewart [5, p 245] as in the proof of Lemma 1 gives
explicit expressions for the general linear multivariate model stacked by person into a
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corresponding mixed model with no random effects and unstructured covariance within
independent sampling unit. Mixed model authors often refer to the stacked model as a
population-average model:

(26)

Here  (108×1), Xs = XM⊗I4 (108×8), β = [βb0 βb1 β b2 βb3 βg0 βg1 β g2 β g3]′

(8×1), and es = vec(E′s) (108×1). For comparing η ̂ using HLT as in equation 21 and  using
Kenward-Roger, we consider tests of gender (in the intercepts), age (joint linear, quadratic,
cubic effects), and gender×age (linear, quadratic, cubic). LINMOD 3.3 (freely available at
web site http://ehpr.ufl.edu/muller) was used to compute η ̂.

Table 3 gives results for corresponding multivariate and mixed models and hypotheses,
contrast matrices, and measures of association for the dental data. The multivariate model in
equation (25) has zero, linear, quadratic, and cubic orthonormal polynomial trend scores.

The multivariate and mixed models assume unstructured covariance. Both η ̂ and  yield
values of 0.27, 0.97, and 0.07, respectively, for the three hypotheses listed. We also

computed  defined by the Satterwaithe, Contain, and residual methods (not shown in
table). The Satterwaithe results were identical to the Kenward-Roger. The Contain and
residual methods were identical and yielded values of 0.09, 0.88, and 0.02, respectively, for
the three hypotheses listed.

5.3 Numerical Results Recommend Kenward-Roger Degrees of Freedom in Defining 

The theoretical properties of  and related distribution theory in sections 4.3–4.5 agree with
the numerical comparisons of mixed models in section 4.1, and also with the numerical
comparisons of mixed and corresponding multivariate models in section 4.2. We conclude

that the linear mixed model statistic  for fixed effects should be defined using the
Kenward-Roger F and the associated denominator degrees of freedom. Doing so insures
coincidence with an appropriate corresponding measure of multivariate association, when
possible, based on the Hotelling-Lawley-Trace statistic. We find it felicitous and not
accidental that both the Wald mixed model statistic and the Hotelling-Lawley-Trace were
originally defined by applying the “substitution principle” to the error covariance matrix in

the respective models. If the models and hypotheses do not coincide, then  and η ̂ need not
coincide.

5.4 Example 1, Dental Data Partial 

Table 4 presents partial  values for model II. For model II, the partial  measures the
partial multivariate association between the repeated outcomes and Gender or Age after
controlling for the effect of the other predictor. The results indicate that the partial
multivariate association between the response and Age is much larger than response and
Gender. Comparing results between two such variable added-last tests in the same model
involve nonnested models. In contrast, Table 2 illustrates comparisons among a sequence of
nested models, which correspond to added-in-order tests and allow simple and appealing

comparisons and interpretations among  values. As noted earlier, the potential
exchangeability of expected value and covariance parameters in imperfect mixed models

may give mild disordinality in  values for nested model sequences.
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5.5 Example 2, Blood Pressure and Race Strength of Relationship
Statisticians have long criticized reporting p-values without a corresponding measure of
importance such as a confidence interval for a mean or a correlation. The lack of a credible
measure of importance for mixed models has led scientists to rely too much on p-values for
interpreting a predictor of particular interest, such as race or treatment. Our concern arises
from the fact that the predictor could be statistically significant yet explain very little of the
variation in the outcome. Data from a retrospective longitudinal cohort study of 459 adults
with hypertension [22] illustrate the problem and the utility of our statistic. Longitudinal
blood pressure (BP) level were taken on patients making at least four visits to the Family
Practice Center at UNC during a two year period, 1999–2001. Predictor variables in the
linear mixed model include indicators for Continuity of Care, and Race, Gender, Insurance
status, Provider type, Marital status, as well as continuous linear Age at first measurement
and linear Time. The random effects include intercept and linear Time, with unstructured
covariance among them, and a within-person error covariance of Σei(τe) = σ2Ini for person i.
Both systolic and diastolic BPfell over the two years (systolic 2.2 mmHg/yr and diastolic 2.8
mmHg/yr). Many studies have confirmed that blacks, on average, have higher BP than
whites. In this study higher BP was associated with blacks versus whites with p-value =
0.0042 for systolic BP and 0.0053 for diastolic BP. The race effect remained the same across
time (there was no Race × Time interaction).

The overall model  statistic was computed for both systolic BP ( ) and diastolic

BP ( ; predictors were Continuity of Care, Gender, Insurance status, Provider type,

Marital status, linear Age, linear Time, Race). The partial  for Race when modeling either
systolic or diastolic BP was 0.02 (corresponding to the added-last test for Race). Thus the
combined predictors have only a very small association with repeated measures of systolic
and diastolic BP in this study. Furthermore, despite being statistically significant, Race
(blacks versus whites) has a nearly negligible association with the responses, after
controlling for the covariates available. Other factors influence BP that were not available,
such as diet, weight, sleep status, alcohol and coffee consumption, smoking, family history,
emotional factors, medication, socioeconomic status, and seasonal factors. The significance
of racial health disparities in BP have been emphasized in many reports [23]. However, for

this longitudinal study the  statistic suggests that race has a very weak association with BP
when other appropriate status variables have been accounted for. As many statisticians have

said before us, we believe  and corresponding measures of importance should always
accompany p-value measures of “significance”. Reviewing the health disparities in BP
findings with the purpose of assessing strength of association would seem meritorious.

5.6 The Possible Role of Changing Covariance Matrices
Although comparing fixed effects across increasing complexity of covariance models seems
appealing, any such comparison of association only makes sense in the uninteresting case in
which the simplest covariance model actually holds true and all models are well estimated.
Otherwise differences in association can occur due to the fixed effects specified by the
underlying hypothesis or by some unrecognized combination of fixed and random effects,
i.e., some unrecognized combination of model differences in means and covariances. We

leave discussion of possible analogs of  allowing different covariance matrices, which
corresponds to evaluating random effects, to future research.
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6. Discussion and Conclusions
6.1 Positive Results

The value and familiarity of the R2 statistic in the linear univariate model naturally generates
great interest in extending it to the linear mixed model. However, the development of R2

statistics for the linear mixed model has received comparatively little attention. We were
motivated to develop a statistic by the substantial limitations of existing R2 statistics.

We proposed a new R2 statistic, , for assessing fixed effects in the linear mixed model.

We interpret  as a measure of multivariate association between the response variable and

the fixed effects in the linear mixed model. The analytic properties of  overcome the
limitations of previous proposals, while longitudinal data examples demonstrated the impact
the proposed R2 statistic can have on future practice. The same statistic generalizes to define
a partial R2 statistic for marginal (fixed) effects of all sorts. None of the other R2 statistics
reviewed appear to have the same important property. Given the sound principles underlying

, the ease of computation due to using a single model, and generalization to a partial

R2statistic, we believe that  should be used to measure association for fixed effects in the
linear mixed model.

6.2 Limitations and Opportunities
We have concentrated on the fixed effects or “marginal” portion of the linear mixed model
and related residuals, while not considering the deviations within individuals, which

correspond to a different type of residual. Basing  on a marginal statistics means it cannot
be used to determine person-specific goodness-of-fit. We believe a different and purpose-
specific measure must be developed to answer the very different questions about variation
within persons.

The coincidence of  with a measure of multivariate association for multivariate model
hypotheses has interesting implications. The HLT provides 1 of 4 widely used test statistics
with corresponding measures of association for multivariate models. The variety of tests
reflect the lack of a uniformly most powerful multivariate test (among similarly invariant
and size α tests). The special case relationship to mixed models immediately implies the
same lack of a single optimal test for mixed models. Hence other combinations of test and

measure of association likely merit consideration as competitors to , a proposition we
leave to future consideration. For example, a reviewer postulated that it can be argued that
all of the R2 measures based on any of the denominator degrees of freedom converge to
well-defined population values defined by each test’s non-centrality parameter as N → ∞.
We note the following: 1) The choice of degrees of freedom clearly affects the rate of
convergence. 2) We think, but are not sure, that the choice of degrees of freedom may
change the parameter being estimated. The latter is a key question for subsequent work on
asymptotics. However, the rates of convergence appear to be so disparate as to make the KR
choice (due to its second order convergence, in contrast to first order for others) a clear
winner, in our view.

As in the special case of the univariate model,  was developed for comparing two models
with nested fixed effects. Comparing models with non-nested fixed effects disallows
applying the distribution theory of the F approximations. As in the univariate case, the
scientific value and interpretation of comparing non-nested models rests with the user in a
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specific application. Readers familiar with the R2 statistic for the linear univariate and

multivariate models may at first be skeptical of a feature of  that allows the measure to
decrease when adding predictors. In the linear univariate and multivariate models, adding a
fixed effect results in an increase (or no change) in the amount of variance explained by the
predictors and hence the monotonic property of both the sample R2 and true population R2.
However, unlike the linear univariate and multivariate models, in the linear mixed model
adding a predictor in the fixed effects (between-subject effect) can increase the estimated
variance of the random effects (within-subject effect) and hence increase the estimated

variance of the response. In such cases,  is interpreted as indicating a decrease in measure
of association possibly due to either misspecification of the “full” model and/or of sampling
variation resulting in changes to the variance components estimates. The true population R2

that  estimates, under suitable conditions, should not decrease when a predictor is added
(Snijders and Bosker [2]).

We caution the reader that a long line of research supports the conclusion that R2 measures
have limited use in model building [1, Chapter 11, Section 11.1]. In building a univariate
linear model, R2 measures serve only as an adjunct to a suite of model diagnostic and
selection tools (as outlined in [1, Chapter 11]). Unfortunately model diagnostic and selection
tools have not been as well developed for the linear mixed model. Also, for a variety of
reasons, the methods that do exist have not become widely known. Even worse in terms of
practical effect, most popular software does not provide easy access. Hence the
development, dissemination, and provision of easily accessible software for model
diagnostics and model selection seems of the highest priority for linear mixed models.
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Appendix: Some Analytic Properties of Mixed Models
Muller and Stewart [5, Section 12.1] describe how a multivariate model can be stated as a
special case of a mixed model. In the mixed model formulation, the defining characteristics
of the special case are “Kronecker design” and “Kronecker covariance.”

Lemma 1
If a linear mixed model corresponds to a multivariate general linear model, and a hypothesis
of interest corresponds to a multivariate general linear hypothesis, then the mixed model
Wald statistic reduces to the Hotelling-Lawley multivariate statistic, except perhaps for a
scaling constant.

Proof
Equation 12.6 in Muller and Stewart [5, p 245] gives explicit expressions for the general
linear multivariate model Y = XMB + E stacked by person into a corresponding mixed model
with no random effects and unstructured covariance within independent sampling unit (often
person). For the sake of brevity, we detail notation only when it varies from that in Muller
and Stewart and omit most intermediate steps involving direct product (A ⊗ L = {aijL}) and
vec (stack by columns) operators. Here Xs = XM ⊗ Ip, Σi ≡ Σi′, and Σs = Ip ⊗ Σi.

Multivariate hypothesis H0: CMBU = θ0 gives . Without loss of
generality, we assume θ0 = 0 and a contrast that retains all times, which implies U = Ip and
θM = CMBIp = [CMβ1 CMβ2 ··· CMβp].

The mixed model uses , and

.
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Except for a scalar constant, the mixed model form may be written

.

Lemma 2
For any testable general linear hypothesis for a general linear mixed model, a linearly
equivalent model may be found in which C = [Ia 0] provides the original test.

Proof
The proof generalizes Theorem 16.16 in Muller and Stewart [5]. For the sake of brevity,
many intermediate results have been omitted, as have details of mixed model notation in
Muller and Stewart [5, Chapters 5, 14, 18). Considering all observations, the model ys = Xsβ
+ Zsds + es has testable secondary parameter θ = Cβ for H0: θ = 0 and a × q C of rank a.
Singular value decomposition gives C = L[Dg(sC)0a×(q−a)][R1 R0]′ with L and Dg(sC) a × a

and R q × q. In turn , and LL′ = L′L = Ia. With R1 q×a and R0 q × (q−a),

 and RR′ R′R = Iq. If ,
then S−1 = [R1 Dg(sC)−1L′ R0]=[C′(CC′)−1R 0]and

The lemma has many implications. Here rank (Xs,c) = a. Testing H0:θ = 0 compares full
model ys = Xs,cθ + Xs,⊥ θ⊥ + Zsds + es to the nested model ys = Xs,⊥θ⊥ + Zs ds + es.
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Table 4

Partial  Results Using Kenward-Rodger F for the Dental Data with Model II

Cov* Variable F

Partial 

1 Gender 9.29 25.0 0.27

Age 114.84 80.0 0.59

2 Gender 7.34 25.0 0.23

Age 85.85 26.0 0.77

3 Gender 6.24 25.2 0.20

Age 87.38 16.9 0.84

*
1 ≡ Random intercept only and Σei(τe) = σ2Ini

2 ≡ Random intercept and slope with unstructured Σdi(τd) and Σei(τe) = σ2Ini

3 ≡ Random intercept and slope with unstructured Σdi(τd) and  for boys and  for girls
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