226 research outputs found

    Federal Regulation of Non-Nuclear Hazardous Wastes: A Research Bibliography

    Get PDF
    In the present work, three junctions were fabricated on textile fabric as an alternative substrate for harvesting piezoelectric potential. First junction was formed on ordinary textile as (textile/multi-walled carbon nanotube film/zinc oxide nanowires (S1: T/CNTs/ZnO NWs)) and the other two were formed on conductive textile with the following layer sequence: conductive textile/zinc oxide nanowires (S2: CT/ZnO NWs) and conductive textile/multi-walled carbon nanotubes film/zinc oxide nanowires (S3: CT/CNTs/ZnO NWs). Piezoelectric potential was harvested by using atomic force microscopy in contact mode for the comparative analysis of the generated piezoelectric potential. ZnO NWs were synthesized by using the aqueous chemical growth method. Surface analysis of the grown nanostructures was performed by using scanning electron microscopy and transmission electron microscopy. The growth orientation and crystalline size were studied by using X-ray diffraction technique. This study reveals that textile as an alternative substrate have many features like cost effective, highly flexible, nontoxic, light weight, soft, recyclable, reproducible, portable, wearable, and washable for nanogenerators fabrication with acceptable performance and with a wide choice of modification for obtaining large amount of piezoelectric potential

    Strain effect in a GaAs-In0.25Ga0.75As-Al0.5Ga0.5As asymmetric quantum wire

    Get PDF
    We report a theoretical investigation of the strain effects on the electronic energy band in a GaAs-In0.25Ga0.75As-Al0.5Ga0.5As asymmetric quantum wire formed in a V-grooved substrate. Our model is based on the sp(3)s* tight-binding model. It includes different spatial distributions of the lattice-mismatch-induced strain. We solve numerically the tight-binding Hamiltonian through the local Green's function from which the electronic local density of states (LDOS) is obtained. The detailed energy band structure (discrete localized states and energy bands of extended states) and the spatial distribution of the eigenfunctions (wave function amplitude of nondegenerate states or sum of the wave function amplitudes of degenerate states) are directly reflected in the LDOS. Spatial mapping of the LDOS's shows a reduction of the lowest excitation energies in different regions of the system when the local lattice structure of the In0.25Ga0.75As layer relaxes from completely strained to completely relaxed. By comparing the calculated results with photoluminescence measurement data, we conclude that the strain in the In0.25Ga0.75As layer relaxes linearly from the heterointerface with the Al0.5Ga0.5As buffer layer to the heterointerface with the top GaAs layer

    Influence of helium-ion bombardment on the optical properties of ZnO nanorods/p-GaN light-emitting diodes

    Get PDF
    Light-emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods grown by vapor-liquid-solid catalytic growth method were irradiated with 2-MeV helium (He+) ions. The fabricated LEDs were irradiated with fluencies of approximately 2 × 1013 ions/cm2 and approximately 4 × 1013 ions/cm2. Scanning electron microscopy images showed that the morphology of the irradiated samples is not changed. The as-grown and He+-irradiated LEDs showed rectifying behavior with the same I-V characteristics. Photoluminescence (PL) measurements showed that there is a blue shift of approximately 0.0347 and 0.082 eV in the near-band emission (free exciton) and green emission of the irradiated ZnO nanorods, respectively. It was also observed that the PL intensity of the near-band emission was decreased after irradiation of the samples. The electroluminescence (EL) measurements of the fabricated LEDs showed that there is a blue shift of 0.125 eV in the broad green emission after irradiation and the EL intensity of violet emission approximately centered at 398 nm nearly disappeared after irradiations. The color-rendering properties show a small decrease in the color-rendering indices of 3% after 2 MeV He+ ions irradiation

    Optical transition in infrared photodetector based on V-groove Al0.5Ga0.5As/GaAs multiple quantum wire

    Get PDF
    Photoconductors based on V-grooved Al0.5Ga0.5As/GaAs multiple quantum wires (QWR) were fabricated. The geometric structure of the QWR was carefully characterized by transmission electron microscopy and spatially resolved microphotoluminescence measurements. Infrared response at 9.2 mum is observed from the photocurrent spectrum measured at 80 K. It is attributed as the intersubband transition in the quantum wire region. Due to the effective quantum confinement from the two (111)-surfaces forming the V groove, the overlapping between the ground state in the QWR and the one in the vertical quantum well is very small. This explains the weak photocurrent signal from the QWR photodetector. Theoretical design for a better wave function overlapping and optical coupling is outlined from the analysis of two-dimensional spatial distributions of the wave functions. (C) 2001 American Institute of Physics

    White Electroluminescence Using ZnO Nanotubes/GaN Heterostructure Light-Emitting Diode

    Get PDF
    We report the fabrication of heterostructure white light–emitting diode (LED) comprised of n-ZnO nanotubes (NTs) aqueous chemically synthesized on p-GaN substrate. Room temperature electroluminescence (EL) of the LED demonstrates strong broadband white emission spectrum consisting of predominating peak centred at 560 nm and relatively weak violet–blue emission peak at 450 nm under forward bias. The broadband EL emission covering the whole visible spectrum has been attributed to the large surface area and high surface states of ZnO NTs produced during the etching process. In addition, comparison of the EL emission colour quality shows that ZnO nanotubes have much better quality than that of the ZnO nanorods. The colour-rendering index of the white light obtained from the nanotubes was 87, while the nanorods-based LED emit yellowish colour

    Biophysical and electrochemical studies of protein-nucleic acid interactions

    Get PDF
    This review is devoted to biophysical and electrochemical methods used for studying protein-nucleic acid (NA) interactions. The importance of NA structure and protein-NA recognition for essential cellular processes, such as replication or transcription, is discussed to provide background for description of a range of biophysical chemistry methods that are applied to study a wide scope of protein-DNA and protein-RNA complexes. These techniques employ different detection principles with specific advantages and limitations and are often combined as mutually complementary approaches to provide a complete description of the interactions. Electrochemical methods have proven to be of great utility in such studies because they provide sensitive measurements and can be combined with other approaches that facilitate the protein-NA interactions. Recent applications of electrochemical methods in studies of protein-NA interactions are discussed in detail
    • …
    corecore