79 research outputs found

    Interaction between U/UO2 bilayers and hydrogen studied by in-situ X-ray diffraction

    Get PDF
    This paper reports experiments investigating the reaction of H2_{2} with uranium metal-oxide bilayers. The bilayers consist of ≤\leq 100 nm of epitaxial α\alpha-U (grown on a Nb buffer deposited on sapphire) with a UO2_{2} overlayer of thicknesses of between 20 and 80 nm. The oxides were made either by depositing via reactive magnetron sputtering, or allowing the uranium metal to oxidise in air at room temperature. The bilayers were exposed to hydrogen, with sample temperatures between 80 and 200 C, and monitored via in-situ x-ray diffraction and complimentary experiments conducted using Scanning Transmission Electron Microscopy - Electron Energy Loss Spectroscopy (STEM-EELS). Small partial pressures of H2_{2} caused rapid consumption of the U metal and lead to changes in the intensity and position of the diffraction peaks from both the UO2_{2} overlayers and the U metal. There is an orientational dependence in the rate of U consumption. From changes in the lattice parameter we deduce that hydrogen enters both the oxide and metal layers, contracting the oxide and expanding the metal. The air-grown oxide overlayers appear to hinder the H2_{2}-reaction up to a threshold dose, but then on heating from 80 to 140 C the consumption is more rapid than for the as-deposited overlayers. STEM-EELS establishes that the U-hydride layer lies at the oxide-metal interface, and that the initial formation is at defects or grain boundaries, and involves the formation of amorphous and/or nanocrystalline UH3_{3}. This explains why no diffraction peaks from UH3_{3} are observed. {\textcopyright British Crown Owned Copyright 2017/AWE}Comment: Submitted for peer revie

    The malleability of uranium: manipulating the charge-density wave in epitaxial films

    Get PDF
    We report x-ray synchrotron experiments on epitaxial films of uranium, deposited on niobium and tungsten seed layers. Despite similar lattice parameters for these refractory metals, the uranium epitaxial arrangements are different and the strains propagated along the a-axis of the uranium layers are of opposite sign. At low temperatures these changes in epitaxy result in dramatic modifications to the behavior of the charge-density wave in uranium. The differences are explained with the current theory for the electron-phonon coupling in the uranium lattice. Our results emphasize the intriguing possibilities of producing epitaxial films of elements that have complex structures like the light actinides uranium to plutonium.Comment: 6 pages, 6 figure

    Structural and magnetic properties of [\lbrackErTb]\rbrackmultilayers

    Get PDF
    Abstract.: We have investigated the structural and magnetic properties of [\lbrack Er|Tb ]\rbrack multilayers by different scattering methods. Diffuse X-ray scattering under grazing incidence reveals the interface structure in [\lbrack Er|Tb ]\rbrack bilayers and trilayers, indicating vertically correlated roughness between the Er and Tb interfaces. The magnetic properties of [\lbrack ErnEr|TbnTb ]\rbrack superlattices have been studied as a function of the superlattice composition (indices denote the number of atomic layers). Coupled ferromagnetic structures exist in all investigated samples. The phase transition temperature varies with the Tb layer thickness. Modulated magnetic order is short range for all samples beside the [\lbrack Er20|Tb5 ]\rbrack superlattice, the sample with the smallest Tb layer thickness. We observe dipolar antiferromagnetic coupling between single ferromagnetic Tb layers in all samples, with the onset of this ordering depending on the Tb layer thickness. Due to competing interactions, exchange coupling is limited to the interface near region. Therefore long range modulated magnetic order is observed in the [\lbrack Er20|Tb5 ]\rbrack superlattice only, where the interface regions overlap. The distinct differences to the magnetic structure of an Er0.8Tb0.2 alloy film are explained by a highly anisotropic arrangement of neighbouring atoms due to the correlated roughnes

    Distinct order of Gd 4f and Fe 3d moments coexisting in GdFe4Al8

    Full text link
    Single crystals of flux-grown tetragonal GdFe4Al8 were characterized by thermodynamic, transport, and x-ray resonant magnetic scattering measurements. In addition to antiferromagnetic order at TN ~ 155 K, two low-temperature transitions at T1 ~ 21 K and T2 ~ 27 K were identified. The Fe moments order at TN with an incommensurate propagation vector (tau,tau,0) with tau varying between 0.06 and 0.14 as a function of temperature, and maintain this order over the entire T<TN range. The Gd 4f moments order below T2 with a ferromagnetic component mainly out of plane. Below T1, the ferromagnetic components are confined to the crystallographic plane. Remarkably, at low temperatures the Fe moments maintain the same modulation as at high temperatures, but the Gd 4f moments apparently do not follow this modulation. The magnetic phase diagrams for fields applied in [110] and [001] direction are presented and possible magnetic structures are discussed.Comment: v2: 14 pages, 12 figures; PRB in prin

    Imaging antiferromagnetic domains in GdNi2Ge2 with x-ray resonant magnetic scattering

    Get PDF
    We describe investigations of antiferromagnetic domains by resonant magnetic diffraction using linearly polarized x rays at the L2 edge of Gd in GdNi2Ge2. Studies of single domains and images of these domains provide details of the magnetic transition from a collinear antiferromagnetic structure for 16

    Simultaneous dynamic electrical and structural measurements of functional materials

    Get PDF
    A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli

    Synchrotron X-ray diffraction investigation of the surface condition of artefacts from King Henry VIII's warship the Mary Rose

    Get PDF
    Synchrotron X-ray diffraction (XRD) measured on the XMaS beamline at the ESRF was used to characterize the alloy composition and crystalline surface corrosion of three copper alloy Tudor artefacts recovered from the undersea wreck of King Henry VIII's warship the Mary Rose. The XRD method adopted has a dynamic range ∼1:105 and allows reflections <0.002% of the height of major reflections in the pattern to be discerned above the background without smoothing. Laboratory XRD, scanning electron microscopy–energy dispersive spectroscopy, synchrotron X-ray fluorescence and X-ray excited optical luminescence–X-ray near-edge absorption structure were used as supporting techniques, and the combination revealed structural and compositional features of importance to both archaeology and conservation. The artefacts were brass links believed to be fragments of chainmail and were excavated from the seabed during 1981 and 1982. Their condition reflects very different treatment just after recovery, viz. complete cleaning and conservation, chemical corrosion inhibition and chloride removal only, and distilled water soaking only (to remove the chlorides). The brass composition has been determined for all three at least in the top 7 µm or so as Cu(73%)Zn(27%) from the lattice constant. Measurement of the peak widths showed significant differences in the crystallite size and microstrain between the three samples. All of the links are found to be almost chloride-free with the main corrosion products being spertiniite, sphalerite, zincite, covellite and chalcocite. The balance of corrosion products between the links reflects the conservation treatment applied to one and points to different corrosion environments for the other two

    Non-Fermi liquid behaviour below the Néel temperature in the frustrated heavy Fermion magnet UAu2

    Get PDF
    The term Fermi liquid is almost synonymous with the metallic state. The association is known to break down at quantum critical points (QCPs), but these require precise values of tuning parameters, such as pressure and applied magnetic field, to exactly suppress a continuous phase transition temperature to the absolute zero. Three-dimensional non-Fermi liquid states, apart from superconductivity, that are unshackled from a QCP are much rarer and are not currently well understood. Here, we report that the triangular lattice system uranium diauride (UAu(2)) forms such a state with a non-Fermi liquid low-temperature heat capacity [Formula: see text] and electrical resistivity [Formula: see text] far below its Néel temperature. The magnetic order itself has a novel structure and is accompanied by weak charge modulation that is not simply due to magnetostriction. The charge modulation continues to grow in amplitude with decreasing temperature, suggesting that charge degrees of freedom play an important role in the non-Fermi liquid behavior. In contrast with QCPs, the heat capacity and resistivity we find are unusually resilient in magnetic field. Our results suggest that a combination of magnetic frustration and Kondo physics may result in the emergence of this novel state

    Magnetic structure of Gd5Ge4

    Get PDF
    Gd5Ge4 crystallizes in the orthorhombic space group Pnma, and orders antiferromagnetically below the Néel temperatureTN∼127 K. We have employed x-ray resonant magnetic scattering to elucidate the details of the magnetic structure. The magnetic unit cell is the same as the chemical unit cell. From azimuth scans and the Q dependence of the magnetic scattering, all three Gd sites in the structure were determined to be in the same magnetic space group Pnm′a. The magnetic moments are primarily aligned along the c axis and the c components of the magnetic moments at the three different sites are equal. The ferromagnetic Gd-rich slabs are stacked antiferromagnetically along the b direction

    X-ray pushing of a mechanical microswing

    Full text link
    Nanoelectromechanical Systems (NEMS) are among the best candidates to measure interactions at nanoscale [1-6], especially when resonating oscillators are used with high quality factor [7, 8]. Despite many efforts [9, 10], efficient and easy actuation in NEMS remains an issue [11]. The mechanism that we propose, thermally mediated Center Of Mass (COM) displacements, represents a new actuation scheme for NEMS and MEMS. To demonstrate this scheme efficiency we show how mechanical nanodis- placements of a MEMS is triggered using modulated X-ray microbeams. The MEMS is a microswing constituted by a Ge microcrystal attached to a Si microcantilever. The interaction is mediated by the Ge absorption of the intensity modulated X-ray microbeam impinging on the microcrystal. The small but finite thermal expansion of the Ge microcrystal is large enough to force a nanodisplacement of the Ge microcrystal COM glued on a Si microlever. The inverse mechanism can be envisaged: MEMS can be used to shape X-ray beams. A Si microlever can be a high frequency X-ray beam chopper for time studies in biology and chemistry.Comment: 5 pages, 4 figur
    • …
    corecore