250 research outputs found
Recommended from our members
Optimization of Transistor Characteristics and Charge Transport in Solution Processed ZnO Thin Films Grown from Zinc Neodecanoate
Abstract
Solution processing of metal oxide-based semiconductors is an attractive route for low-cost fabrication of thin films devices. ZnO thin films were synthesized from one-step spin coating-pyrolysis technique using zinc neodecanoate precursor. X-ray diffraction (XRD), UVâvisible optical transmission spectrometry and photoluminescence spectroscopy suggested conversion to polycrystalline ZnO phase for decomposition temperatures higher than 400 °C. A 15 % precursor concentration was found to produce optimal TFT performance on annealing at 500 °C, due to generation of sufficient charge percolation pathways. The device performance was found to improve upon increasing the annealing temperature and the optimal saturation mobility of 0.1 cm2 Vâ1 sâ1 with ION/IOFF ratioâ~â107 was achieved at 700 °C annealing temperature. The analysis of experimental results based on theoretical models to understand charge transport envisaged that the grain boundary depletion region is major source of deep level traps and their effective removal at increased annealing temperature leads to evolution of transistor performance.
Graphic Abstract
Single-step spin coating-pyrolysis synthesis of ZnO thin films from non-aqueous precursor zinc neodecanoate has been investigated for transistor applications.
</jats:sec
Recommended from our members
Ultra-flat Gold QCM Electrodes Fabricated with Pressure Forming Template Stripping for Protein Studies at the Nanoscale
Single-molecule imaging of proteins using atomic force microscopy (AFM) is crucially dependent on protein attachment to ultra-flat substrates. The technique of template stripping (TS), which can be used to create large areas of atomically flat gold, has been used to great effect
for this purpose. However, this approach requires an epoxy which can swell in solution, causing surface roughening and substantially increasing the thickness of any sample, preventing its use on acoustic resonators in liquid. Diffusion bonding techniques should circumvent this problem
but cannot be used on samples containing patterned features with mismatched heights due to cracking and poor transfer. Here, we describe a new technique called pressure forming template stripping (PTS) which permits an ultra-flat (0.35 ± 0.05 nm root-mean-square roughness) layer
of gold to be transferred to the surface of a patterned substrate at low temperature and pressure. We demonstrate this technique by modifying a quartz crystal microbalance (QCM) sensor to contain an ultra-flat gold surface. Standard QCM chips have substantial roughness, preventing
AFM imaging of proteins on the surface after measurement. With our approach there is no need to run samples in parallel: the modified QCM chip is flat enough to permit high-contrast AFM imaging after adsorption studies have been conducted. The PTS-QCM chips are then used to
demonstrate adsorption of bovine serum albumin in comparison to rough QCM chips. The ability to attach thin layers of ultra-flat metals to surfaces of heterogeneous nature without epoxy will have many applications in diverse fields where there is a requirement to observe nanoscale phenomena with multiple techniques, including surface and interfacial science, optics, and biosensing
Recommended from our members
Core-Shell Electrospun Polycrystalline ZnO Nanofibers for Ultra-Sensitive NO2 Gas Sensing.
This Research Article discusses the growth of polycrystalline, self-supporting ZnO nanofibers, which can detect nitrogen dioxide (NO2) gas down to 1 part per billion (ppb), one of the smallest detection limits reported for NO2 using ZnO. A new and innovative method has been developed for growing polycrystalline ZnO nanofibers. These nanofibers have been created using core-shell electrospinning of inorganic metal precursor zinc neodecanoate, where growth occurs at the core of the nanofibers. This process produces contamination-free, self-supporting, polycrystalline ZnO nanofibers of an average diameter and grain size 50 and 8 nm, respectively, which are ideal for gas sensing applications. This process opens up an exciting opportunity for creating nanofibers from a variety of metal oxides, facilitating many new applications especially in the areas of sensors and wearable technologies.Llodys Register foundatio
Emerging Applications of Liquid Crystals Based on Nanotechnology.
Diverse functionalities of liquid crystals (LCs) offer enormous opportunities for their potential use in advanced mobile and smart displays, as well as novel non-display applications. Here, we present snapshots of the research carried out on emerging applications of LCs ranging from electronics to holography and self-powered systems. In addition, we will show our recent results focused on the development of new LC applications, such as programmable transistors, a transparent and active-type two-dimensional optical array and self-powered display systems based on LCs, and will briefly discuss their novel concepts and basic operating principles. Our research will give insights not only into comprehensively understanding technical and scientific applications of LCs, but also developing new discoveries of other LC-based devices
Influence of specific HSP70 domains on fibril formation of the yeast prion protein Ure2.
Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p
Chameleon masculinity: developing the British âpopulation-centredâ soldier
In this article I develop what I term chameleon masculinity as a specific form of gendered adaptation of military agency opened up by the post-9/11 shift towards âpopulation-centredâ counterinsurgency and stabilisation. A gendered analysis of this carefully cultivated form of military agency is central to revealing some of the concealed embodied dynamics that challenge the hegemony of the traditional combat soldier, and in practice enables this form of war. Drawing on 18 months of anthropological fieldwork, for the most part alongside the UKâs Military Stabilisation Support Group, this research incorporates my auto-ethnography as an officer in the Royal Naval Reserves. Rather than focusing at the level of policy, strategy, and doctrine, I examine how the specialized and masculinized agency of âthe chameleonâ translates tactically into the body of the British military stabilisation operative, showing how this is developed though intensive pre-deployment training in the UK, and embodied and practised through operational deployment in Afghanistan. This reveals the specific agency of chameleon masculinity and how its potential for inherent violence becomes deceptively âhidden in plain sightâ
Holder exponents of irregular signals and local fractional derivatives
It has been recognized recently that fractional calculus is useful for
handling scaling structures and processes. We begin this survey by pointing out
the relevance of the subject to physical situations. Then the essential
definitions and formulae from fractional calculus are summarized and their
immediate use in the study of scaling in physical systems is given. This is
followed by a brief summary of classical results. The main theme of the review
rests on the notion of local fractional derivatives. There is a direct
connection between local fractional differentiability properties and the
dimensions/ local Holder exponents of nowhere differentiable functions. It is
argued that local fractional derivatives provide a powerful tool to analyse the
pointwise behaviour of irregular signals and functions.Comment: 20 pages, Late
Sedimentary Ways
This paper is a thought experiment to attune to the geo-physical and geo-political materialities of sediment, a terra-aqueous substance produced when the earth's continental surfaces intra-act with the atmosphere and are chemically transformed by it. The paper is framed by questions of how to engage more closely with the dynamics of earth systems and of how social and political agency emerges alongside earth forces. Sediment is important to such questions because it is the mechanism by which the earth recycles itself and is thick with the climatological and geological histories that have conditioned the possibility of life on the planet. While acknowledging the import of Deleuze and Guattari's metaphysics to such questions, the paper takes a material approach to them. It is based on field work in Bangladesh, but also traverses a range of scientific, historical and theoretical literature. It is arranged in four sections that loosely correspond to the sedimentary cycle. It follows sediment from chemical processes on rock surfaces in the Himalayas, to its lively travels in monsoonal rivers across flood plains to its eventual deposition and subterranean diagenesis. In each section, the paper discusses the material processes at work, their socio-political enmeshments and the theoretical implications of these intra-actions. The paper concludes that sediment serves as a reminder not only of close entanglements of geo-physical and geo-political becomings, but also of the profound indifference of earth systems to human affairs, and asks what this might mean for the re-imagination of politics
- âŠ