26 research outputs found

    A Type 2C Protein Phosphatase FgPtc3 Is Involved in Cell Wall Integrity, Lipid Metabolism, and Virulence in Fusarium graminearum

    Get PDF
    Type 2C protein phosphatases (PP2Cs) play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8) exhibited reduced aerial hyphae formation and deoxynivalenol (DON) production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum

    Saccharomyces cerevisiae Hog1 protein phosphorylation upon exposure to bacterial endotoxin

    Get PDF
    The yeast Hog1 protein is both functionally and structurally similar to the mammalian p38, belonging to the same family of mitogen-activated protein (MAP) kinases and responding to extracellular changes in osmolarity. Since p38 mediates lipopolysaccharide (LPS) effects in mammalian cells, we now tested the responsiveness of Hog1 upon exposure of the yeast Saccharomyces cerevisiae to bacterial LPS. In the presence of Escherichia coli LPS (100 ng/ml) and an endotoxically active, hexaacylated, synthetic lipid A (compound 506; 100 ng/ml), Hog1 becomes phosphorylated with a maximum of phosphorylation between 3 and 6 h, whereas a tetraacylated, inactive form of lipid A (compound 406) did not cause any modification in the phosphorylation state of Hog1. A triple labeling immunocytochemical study showed that phosphorylated Hog1 translocates into the nucleus after a 90-min incubation and becomes sparsely located in the cytoplasm. The translocation of the phospho-Hog1 is preceded by an increased expression of the HOG1 gene and concomitant with the expression of the Hog1 target gene, GPD1. We also observed that cells unable to synthesize Hog1 do not resist LPS as efficiently as wild-type cells. We conclude that the yeast S. cerevisiae is able to respond to the presence of Gram-negative bacteria endotoxin and that Hog1 is involved in this respons

    The MAPK Hog1p Modulates Fps1p-dependent Arsenite Uptake and Tolerance in Yeast

    No full text
    Arsenic is widely distributed in nature and all organisms possess regulatory mechanisms to evade toxicity and acquire tolerance. Yet, little is known about arsenic sensing and signaling mechanisms or about their impact on tolerance and detoxification systems. Here, we describe a novel role of the S. cerevisiae mitogen-activated protein kinase Hog1p in protecting cells during exposure to arsenite and the related metalloid antimonite. Cells impaired in Hog1p function are metalloid hypersensitive, whereas cells with elevated Hog1p activity display improved tolerance. Hog1p is phosphorylated in response to arsenite and this phosphorylation requires Ssk1p and Pbs2p. Arsenite-activated Hog1p remains primarily cytoplasmic and does not mediate a major transcriptional response. Instead, hog1Δ sensitivity is accompanied by elevated cellular arsenic levels and we demonstrate that increased arsenite influx is dependent on the aquaglyceroporin Fps1p. Fps1p is phosphorylated on threonine 231 in vivo and this phosphorylation critically affects Fps1p activity. Moreover, Hog1p is shown to affect Fps1p phosphorylation. Our data are the first to demonstrate Hog1p activation by metalloids and provides a mechanism by which this kinase contributes to tolerance acquisition. Understanding how arsenite/antimonite uptake and toxicity is modulated may prove of value for their use in medical therapy

    Activating K-Ras mutations outwith "hotspot" codons in sporadic colorectal tumours:implications for personalised cancer medicine

    Get PDF
    The increasing burden of infectious diseases such as HIV, malaria and TB coupled with changing standards and regulatory requirements mean that many laboratory services in the world’s poorest countries are struggling to provide even a basic service. Chronic neglect has led to crippling staff shortages, inadequate funding, poor quality reagents and unreliable equipment. This situation is changing as international policy makers and funding agencies begin to recognise the critical role that laboratory services play in underpinning all aspects of healthcare. Many laboratory clinicians and scientists from the UK have experience of working and living in developing countries and have contributed to supporting their laboratory services. These efforts have generally not been widely disseminated, and there is no mechanism for learning lessons, for synergising or for avoiding duplication. Several recent government strategies urge UK institutions to increase their inputs to healthcare in poorer countries and there are several laboratory medicine initiatives (viz: the session on Pathology in the Developing World) that are putting this into practice. The RCPath is committed to playing a pivotal role in coordinating and expanding role of UK expertise in developing laboratory medicine in lowincome countries
    corecore