993 research outputs found

    SUSY GUTs under Siege : Proton Decay

    Get PDF
    SO(10) supersymmetric grand unified theories [SUSY GUTs] provide a beautiful framework for physics beyond the standard model. Experimental measurements of the three gauge couplings are consistent with unification at a scale MG3×1016M_G \sim 3 \times 10^{16} GeV. In addition predictive models for fermion masses and mixing angles have been found which fit the low energy data, including the recent data for neutrino oscillations. SO(10) boundary conditions can be tested via the spectrum of superparticles. The simplest models also predict neutron and proton decay rates. In this paper we discuss nucleon decay rates and obtain reasonable upper bounds. A clear picture of the allowed SUSY spectra as constrained by nucleon decay is presented.Comment: 13 page

    The influence of tennis court surfaces on player perceptions and biomechanical response.

    Get PDF
    This study aimed to examine player perceptions and biomechanical responses to tennis surfaces and to evaluate the influence of prior clay court experience. Two groups with different clay experiences (experience group, n = 5 and low-experience group, n = 5) performed a 180° turning movement. Three-dimensional ankle and knee movements (50 Hz), plantar pressure of the turning step (100 Hz) and perception data (visual analogue scale questionnaire) were collected for two tennis courts (acrylic and clay). Greater initial knee flexion (acrylic 20. 8 ± 11.2° and clay 32.5 ± 9.4°) and a more upright position were reported on the clay compared to the acrylic court (P < 0.05). This suggests adaptations to increase player stability on clay. Greater hallux pressures and lower midfoot pressures were observed on the clay court, allowing for sliding whilst providing grip at the forefoot. Players with prior clay court experience exhibited later peak knee flexion compared to those with low experience. All participants perceived the differences in surface properties between courts and thus responded appropriately to these differences. The level of previous clay court experience did not influence players' perceptions of the surfaces; however, those with greater clay court experience may reduce injury risk as a result of reduced loading through later peak knee flexion

    Protein adsorption on preadsorbed polyampholytic monolayers

    Full text link
    The adsorption behaviour of five different globular proteins on pure silicon substrates and on preadsorbed polyampholytic monolayers has been investigated as a function of protein concentration. The prelayers were prepared by adsorption of the ampholytic diblock copolymer poly(methacrylic acid)-block-poly ((dimethylamino)ethyl methacrylate) (PMAA-b-PDMAEMA). This polyampholyte adsorbs in densely packed micelles directly from aqueous solution. Ellipsometry was used to determine the amount of adsorbed polyampholyte and protein. While ATR-IR spectroscopy gives information about the adsorption and desorption behaviour of the preadsorbed polyampholytic layer, the lateral structures of the dried films were investigated by scanning force microscopy (SFM). The amount of protein adsorbed was found to be strongly influenced by the preadsorbed polyampholyte compared to the adsorption on the pure silicon substrates. No displacement of the polyampholyte by the proteins was detected. In most cases the protein adsorption was reduced by the preadsorbed polyampholytic layer. The observed trends are explained by the change in electrostatic and hydrophilic characteristics of the substrates. Furthermore, the entropy of adsorption has to be taken into account.Peer reviewe

    Novel Approach to Confront Electroweak Data and Theory

    Get PDF
    A novel approach to study electroweak physics at one-loop level in generic SU(2)L×U(1)Y{\rm SU(2)_L \times U(1)_Y} theories is introduced. It separates the 1-loop corrections into two pieces: process specific ones from vertex and box contributions, and universal ones from contributions to the gauge boson propagators. The latter are parametrized in terms of four effective form factors eˉ2(q2)\bar{e}^2(q^2), sˉ2(q2)\bar{s}^2(q^2), gˉZ2(q2)\bar{g}_Z^2(q^2) and gˉW2(q2)\bar{g}_W^2 (q^2) corresponding to the γγ\gamma\gamma, γZ\gamma Z, ZZZZ and WWWW propagators. Under the assumption that only the Standard Model contributes to the process specific corrections, the magnitudes of the four form factors are determined at q2=0q^2=0 and at q^2=\mmz by fitting to all available precision experiments. These values are then compared systematically with predictions of SU(2)L×U(1)Y{\rm SU(2)_L \times U(1)_Y} theories. In all fits \alpha_s(\mz) and \bar{\alpha}(\mmz) are treated as external parameters in order to keep the interpretation as flexible as possible. The treatment of the electroweak data is presented in detail together with the relevant theoretical formulae used to interpret the data. No deviation from the Standard Model has been identified. Ranges of the top quark and Higgs boson masses are derived as functions of \alpha_s(\mz) and \bar{\alpha}(\mmz). Also discussed are consequences of the recent precision measurement of the left-right asymmetry at SLC as well as the impact of a top quark mass and an improved WW mass measurement.Comment: 123 pages, LaTeX (33 figures available via anonymous ftp), KEK-TH-375, KEK preprint 93-159, KANAZAWA-94-19, DESY 94-002, YUMS 94-22, SNUTP 94-82, to be published in Z.Phys.

    Adaptations of Avian Flu Virus Are a Cause for Concern

    Get PDF
    We are in the midst of a revolutionary period in the life sciences. Technological capabilities have dramatically expanded, we have a much improved understanding of the complex biology of selected microorganisms, and we have a much improved ability to manipulate microbial genomes. With this has come unprecedented potential for better control of infectious diseases and significant societal benefit. However, there is also a growing risk that the same science will be deliberately misused and that the consequences could be catastrophic. Efforts to describe or define life-sciences research of particular concern have focused on the possibility that knowledge or products derived from such research, or new technologies, could be directly misapplied with a sufficiently broad scope to affect national or global security. Research that might greatly enhance the harm caused by microbial pathogens has been of special concern (1–3). Until now, these efforts have suffered from a lack of specificity and a paucity of concrete examples of “dual use research of concern” (3). Dual use is defined as research that could be used for good or bad purposes. We are now confronted by a potent, real-world example

    To be financed or not : the role of patents for venture capital financing

    Get PDF
    This paper investigates how patent applications and grants held by new ventures improve their ability to attract venture capital (VC) financing. We argue that investors are faced with considerable uncertainty and therefore rely on patents as signals when trying to assess the prospects of potential portfolio companies. For a sample of VC-seeking German and British biotechnology companies we have identified all patents filed at the European Patent Office (EPO). Applying hazard rate analysis, we find that in the presence of patent applications, VC financing occurs earlier. Our results also show that VCs pay attention to patent quality, financing those ventures faster which later turn out to have high-quality patents. Patent oppositions increase the likelihood of receiving VC, but ultimate grant decisions do not spur VC financing, presumably because they are anticipated. Our empirical results and interviews with VCs suggest that the process of patenting generates signals which help to overcome the liabilities of newness faced by new ventures
    corecore