1,226 research outputs found
High speed imaging of traveling waves in a granular material during silo discharge
We report experimental observations of sound waves in a granular material
during resonant silo discharge called silo music. The grain motion was tracked
by high speed imaging while the resonance of the silo was detected by
accelerometers and acoustic methods. The grains do not oscillate in phase at
neighboring vertical locations, but information propagates upward in this
system in the form of sound waves. We show that the wave velocity is not
constant throughout the silo, but considerably increases towards the lower end
of the system, suggesting increased pressure in this region, where the flow
changes from cylindrical to converging flow. In the upper part of the silo the
wave velocity matches the sound velocity measured in the same material when
standing (in the absence of flow). Grain oscillations show a stick-slip
character only in the upper part of the silo.Comment: 5 pages, 5 figures, accepted to Phys. Rev.
Whispering Gallery States of Antihydrogen
We study theoretically interference of the long-living quasistationary
quantum states of antihydrogen atoms, localized near a concave material
surface. Such states are an antimatter analog of the whispering gallery states
of neutrons and matter atoms, and similar to the whispering gallery modes of
sound and electro-magnetic waves. Quantum states of antihydrogen are formed by
the combined effect of quantum reflection from van der Waals/Casimir-Polder
(vdW/CP) potential of the surface and the centrifugal potential. We point out a
method for precision studies of quantum reflection of antiatoms from vdW/CP
potential; this method uses interference of the whispering gallery states of
antihydrogen.Comment: 13 pages 7 figure
Nature of acoustic nonlinear radiation stress
When a fluid is insonified with ultrasound, a flow consequence of a net stress becomes observable, which has been described as acoustic streaming, quartz wind, acoustic radiation force or acoustic fountain. Following Sir James Lighthill's formulation of the Reynold's streaming, these phenomena have been attributed to a cumulative viscous effect. Instead, a new multiscale effect, whereby the constitutive elastic nonlinearity scales from the ultrasonic to the macroscopic time, is here proposed and formulated to explain its origin. This raises a new term in the Navier-Stokes equation, which ultimately stems from the anharmonicity of the atomic potential. In our experimental validation, this theory is consistent in water and for a range of ultrasonic configurations, whereas the formerly established viscous theory fails by an order of magnitude. This ultrasonic-fluid interaction, called nonlinear mechanical radiation since it is able to remotely exert a stress field, correctly explains a wide range of industrial and biomedical active ultrasonic uses including jet engines, acoustic tweezers, cyanobacteria propulsion mechanisms, nanofluidics or acoustic radiation force elastography.Ministerio de EconomĂa y Competitividad (Spain) for Project DPI2010-17065, and Junta de AndalucĂa for Projects P11-CTS-8089 and GGI3000IDIB
On the attractors of two-dimensional Rayleigh oscillators including noise
We study sustained oscillations in two-dimensional oscillator systems driven
by Rayleigh-type negative friction. In particular we investigate the influence
of mismatch of the two frequencies. Further we study the influence of external
noise and nonlinearity of the conservative forces. Our consideration is
restricted to the case that the driving is rather weak and that the forces show
only weak deviations from radial symmetry. For this case we provide results for
the attractors and the bifurcations of the system. We show that for rational
relations of the frequencies the system develops several rotational excitations
with right/left symmetry, corresponding to limit cycles in the four-dimensional
phase space. The corresponding noisy distributions have the form of hoops or
tires in the four-dimensional space. For irrational frequency relations, as
well as for increasing strength of driving or noise the periodic excitations
are replaced by chaotic oscillations.Comment: 9 pages, 5 figure
SEA analysis in the cabin of a regional turboprop with metamaterial lining panels
The main goal of this paper is to evaluate the comfort, and hence the interior sound pressure
levels, in the cabin of a regional turboprop with metamaterial lining panels under Turbulent
Boundary Layer flow over the fuselage during cruise flight conditions. In the preliminary
work phase, the design of metamaterial and a numerical analysis at component level were
performed. Then, the CAD model of the fuselage was created representing the typical features
and dimensions of an airplane for regional flights and a Statistical Energy Analysis (SEA) model
was built by using Va One software. An investigation on the influence of designed metamaterial
on the soundproofing of the cabin was presented. Results reveal a reduction in Sound Pressure
Level (SPL) of almost 5 dB with respect to classical materials, in overall the frequency range
and for all the cavities analyzed, in the configuration with metamaterial applied as core of the
sandwich lining panels
Active motions of Brownian particles in a generalized energy-depot model
We present a generalized energy-depot model in which the conversion rate of
the internal energy into motion can be dependent on the position and the
velocity of a particle. When the conversion rate is a general function of the
velocity, the active particle exhibits diverse patterns of motion including a
braking mechanism and a stepping motion. The phase trajectories of the motion
are investigated in a systematic way. With a particular form of the conversion
rate dependent on the position and velocity, the particle shows a spontaneous
oscillation characterizing a negative stiffness. These types of active
behaviors are compared with the similar phenomena observed in biology such as
the stepping motion of molecular motors and the amplification in hearing
mechanism. Hence, our model can provide a generic understanding of the active
motion related to the energy conversion and also a new control mechanism for
nano-robots. We also investigate the noise effect, especially on the stepping
motion and observe the random walk-like behavior as expected.Comment: to appear in New J. Phy
Noise-Induced Transition from Translational to Rotational Motion of Swarms
We consider a model of active Brownian agents interacting via a harmonic
attractive potential in a two-dimensional system in the presence of noise. By
numerical simulations, we show that this model possesses a noise-induced
transition characterized by the breakdown of translational motion and the onset
of swarm rotation as the noise intensity is increased. Statistical properties
of swarm dynamics in the weak noise limit are further analytically
investigated.Comment: 7 pages, 7 figure
Evolution of a barotropic shear layer into elliptical vortices
When a barotropic shear layer becomes unstable, it produces the well known
Kelvin-Helmholtz instability (KH). The non-linear manifestation of KH is
usually in the form of spiral billows. However, a piecewise linear shear layer
produces a different type of KH characterized by elliptical vortices of
constant vorticity connected via thin braids. Using direct numerical simulation
and contour dynamics, we show that the interaction between two
counter-propagating vorticity waves is solely responsible for this KH
formation. We investigate the oscillation of the vorticity wave amplitude, the
rotation and nutation of the elliptical vortex, and straining of the braids.
Our analysis also provides possible explanation behind the formation and
evolution of elliptical vortices appearing in geophysical and astrophysical
flows, e.g. meddies, Stratospheric polar vortices, Jovian vortices, Neptune's
Great Dark Spot and coherent vortices in the wind belts of Uranus.Comment: 7 pages, 4 figures, Accepted in Physical Review
Forced instability of core-annular flow in capillary constrictions
Instability of fluid cylinders and jets, a highly nonlinear hydrodynamic phenomenon, has fascinated researchers for nearly 150 years. A subset of the phenomenon is the core-annular flow, in which a non-wetting core fluid and a surrounding wall-wetting annulus flow through a solid channel. The model, for example, represents the flow of oil in petroleum reservoirs. The flow may be forced to break up when passing through a channel’s constriction. Although it has long been observed that the breakup occurs near the neck of the constriction, the exact conditions for the occurrence of the forced breakup and its dynamic theory have not been understood. Here, we test a simple geometric conjecture that the fluid will always break in the constrictions of all channels with sufficiently long wavelengths, regardless of the fluid properties. We also test a theory of the phenomenon. Four constricted glass tubes were fabricated above and below the critical wavelength required for the fluid disintegration. In a direct laboratory experiment, the breakup occurred according to the conjecture: the fluids were continuous in the shorter tubes but disintegrated in the longer tubes. The evolution of the interface to its pinch-off was recorded using high-speed digital photography. The experimentally observed core-annulus interface profiles agreed well with the theory, although the total durations of the process agreed less satisfactorily. Nonetheless, as the theory predicts, the ratio between the experimental and theoretical times of the breakup process tends to one with decreasing capillary number. The breakup condition and the dynamic theory of fluid disintegration in constricted channels can serve as quantitative models of this important natural and technical phenomenon
The effect of pressure on statics, dynamics and stability of multielectron bubbles
The effect of pressure and negative pressure on the modes of oscillation of a
multi-electron bubble in liquid helium is calculated. Already at low pressures
of the order of 10-100 mbar, these effects are found to significantly modify
the frequencies of oscillation of the bubble. Stabilization of the bubble is
shown to occur in the presence of a small negative pressure, which expands the
bubble radius. Above a threshold negative pressure, the bubble is unstable.Comment: 4 pages, 2 figures, accepted for publication in Physical Review
Letter
- …