research

Evolution of a barotropic shear layer into elliptical vortices

Abstract

When a barotropic shear layer becomes unstable, it produces the well known Kelvin-Helmholtz instability (KH). The non-linear manifestation of KH is usually in the form of spiral billows. However, a piecewise linear shear layer produces a different type of KH characterized by elliptical vortices of constant vorticity connected via thin braids. Using direct numerical simulation and contour dynamics, we show that the interaction between two counter-propagating vorticity waves is solely responsible for this KH formation. We investigate the oscillation of the vorticity wave amplitude, the rotation and nutation of the elliptical vortex, and straining of the braids. Our analysis also provides possible explanation behind the formation and evolution of elliptical vortices appearing in geophysical and astrophysical flows, e.g. meddies, Stratospheric polar vortices, Jovian vortices, Neptune's Great Dark Spot and coherent vortices in the wind belts of Uranus.Comment: 7 pages, 4 figures, Accepted in Physical Review

    Similar works