16,642 research outputs found
Dirac and non-Dirac conditions in the 2-potential theory of magnetic charge
We investigate the Cabbibo-Ferrari, two potential approach to magnetic charge
coupled to two different complex scalar fields, and , each
having different electric and magnetic charges. The scalar field, , is
assumed to have a spontaneous symmetry breaking self interaction potential
which gives a mass to the "magnetic" gauge potential and "magnetic" photon,
while the other "electric" gauge potential and "electric" photon remain
massless. The magnetic photon is hidden until one reaches energies of the order
of the magnetic photon rest mass. The second scalar field, , is
required in order to make the theory non-trivial. With only one field one can
always use a duality rotation to rotate away either the electric or magnetic
charge, and thus decouple either the associated electric or magnetic photon. In
analyzing this system of two scalar fields in the Cabbibo-Ferrari approach we
perform several duality and gauge transformations, which require introducing
non-Dirac conditions on the initial electric and magnetic charges. We also find
that due to the symmetry breaking the usual Dirac condition is altered to
include the mass of the magnetic photon. We discuss the implications of these
various conditions on the charges.Comment: revtex 9 pages, 1 figure, to be published EPJ
A line of CFTs: from generalized free fields to SYK
We point out that there is a simple variant of the SYK model, which we call
cSYK, that is invariant for all values of the coupling. The
modification consists of replacing the UV part of the SYK action with a
quadratic bilocal term. The corresponding bulk dual is a non-gravitational
theory in a rigid AdS background. At weak coupling cSYK is a generalized
free field theory; at strong coupling, it approaches the infrared of SYK. The
existence of this line of fixed points explains the previously found connection
between the three-point function of bilinears in these two theories at large
.Comment: 26 pages, v
The Bulk Dual of SYK: Cubic Couplings
The SYK model, a quantum mechanical model of Majorana fermions
, with a -body, random interaction, is a novel realization of
holography. It is known that the AdS dual contains a tower of massive
particles, yet there is at present no proposal for the bulk theory. As SYK is
solvable in the expansion, one can systematically derive the bulk. We
initiate such a program, by analyzing the fermion two, four and six-point
functions, from which we extract the tower of singlet, large dominant,
operators, their dimensions, and their three-point correlation functions. These
determine the masses of the bulk fields and their cubic couplings. We present
these couplings, analyze their structure and discuss the simplifications that
arise for large .Comment: 39 pages, v2: Evaluation of integral in Sec. 3.3.2 correcte
All point correlation functions in SYK
Large melonic theories are characterized by two-point function Feynman
diagrams built exclusively out of melons. This leads to conformal invariance at
strong coupling, four-point function diagrams that are exclusively ladders, and
higher-point functions that are built out of four-point functions joined
together. We uncover an incredibly useful property of these theories: the
six-point function, or equivalently, the three-point function of the primary
invariant bilinears, regarded as an analytic function of the operator
dimensions, fully determines all correlation functions, to leading nontrivial
order in , through simple Feynman-like rules. The result is applicable to
any theory, not necessarily melonic, in which higher-point correlators are
built out of four-point functions. We explicitly calculate the bilinear
three-point function for -body SYK, at any . This leads to the bilinear
four-point function, as well as all higher-point functions, expressed in terms
of higher-point conformal blocks, which we discuss. We find universality of
correlators of operators of large dimension, which we simplify through a saddle
point analysis. We comment on the implications for the AdS dual of SYK.Comment: 67 pages, v
The Evolution of Multicomponent Systems at High Pressures: VI. The Thermodynamic Stability of the Hydrogen-Carbon System: The Genesis of Hydrocarbons and the Origin of Petroleum
The spontaneous genesis of hydrocarbons which comprise natural petroleum have
been analyzed by chemical thermodynamic stability theory. The constraints
imposed upon chemical evolution by the second law of thermodynamics are briefly
reviewed; and the effective prohibition of transformation, in the regime of
temperatures and pressures characteristic of the near-surface crust of the
Earth, of biological molecules into hydrocarbon molecules heavier than methane
is recognized.
A general, first-principles equation of state has been developed by extending
scaled particle theory (SPT) and by using the technique of the factored
partition function of the Simplified Perturbed Hard Chain Theory (SPHCT). The
chemical potentials, and the respective thermodynamic Affinity, have been
calculated for typical components of the hydrogen-carbon (H-C) system over a
range pressures between 1-100 kbar, and at temperatures consistent with those
of the depths of the Earth at such pressures. The theoretical analyses
establish that the normal alkanes, the homologous hydrocarbon group of lowest
chemical potential, evolve only at pressures greater than approximately thirty
kbar, excepting only the lightest, methane. The pressure of thirty kbar
corresponds to depths of approximately 100 km.
Special high-pressure apparatus has been designed which permits
investigations at pressures to 50 kbar and temperatures to 2000 K, and which
also allows rapid cooling while maintaining high pressures. The high-pressure
genesis of petroleum hydrocarbons has been demonstrated using only the solid
reagents iron oxide, FeO, and marble, CaCO3, 99.9% pure and wet with
triple-distilled water
Geodesic equivalence and integrability
We suggest a construction that, given a trajectorial diffeomorphism between
two Hamiltonian systems, produces integrals of them.
As the main example we treat geodesic equivalence of metrics.
We show that the existence of a non-trivially geodesically equivalent metric
leads to Liouville integrability, and present explicit formulae for integrals.Comment: 19 pages; LaTe
Relativistic corrections of m\alpha^6 order to the ro-vibrational spectrum of H_2^+ and HD^+ molecular ions
The major goal of the high-precision studies of ro-vibrational states in the
hydrogen molecular ions is to provide an alternative way for improving the
electron-to-proton mass ratio, or the atomic mass of electron. By now the
complete set of relativistic and radiative corrections have been obtained for a
wide range of ro-vibrational states of H_2^+ and HD^+ up to order
R_\infty\alpha^4. In this work we complete calculations of various
contributions to the R_\infty\alpha^4 order by computing the relativistic
corrections to the binding energy of electron.Comment: 4 pages, 1 figur
- …