163 research outputs found
The Dimer Model for k-phase Organic Superconductors
We prove that the upper electronic bands of k-phase BEDT-TTF salts are
adequately modeled by an half-filled tight-binding lattice with one site per
cell. The band parameters are derived from recent ab-initio calculations,
getting a very simple but extremely accurate one-electron picture. This picture
allows us to solve the BCS gap equation adopting a real-space pairing
potential. Comparison of the calculated superconducting properties with the
experimental data points to isotropic s_0-pairing. Residual many-body or
phonon-mediated interactions offer a plausible explanation of the large variety
of physical properties observed in k-phase BEDT-TTF salts.Comment: 8 pages, 6 PostScript figures, uses RevTe
Symmetrized mean-field description of magnetic instabilities in k-(BEDT-TTF)_2Cu[N(CN)]_2 Y salts
We present a novel and convenient mean-field method, and apply it to study
the metallic/antiferromagnetic interface of k-(BEDT-TTF)_2Cu[N(CN)]_2 Y organic
superconductors (BEDT_TTF is bis-ethylen-dithio-tetrathiafulvalene, Y=Cl, Br).
The method, which fully exploits the crystal symmetry, allows one to obtain the
mean-field solution of the 2D Hubbard model for very large lattices, up to
6x10^5 sites, yielding a reliable description of the phase boundary in a wide
region of the parameter space. The metal/antiferromagnet transtion appears to
be second order, except for a narrow region of the parameter space, where the
transition is very sharp and possibly first order. The cohexistence of metallic
and antiferromagnetic properties is only observed for the transient state in
the case of smooth second order transitions. The relevance of the present
resaults to the complex experimental behavior of centrosymmetric k-phase
BEDT-TTF salts is discussed.Comment: 9 pages in PS format, 7 figures (included in PS), 1 tabl
BEDT-TTF organic superconductors: the entangled role of phonons
We calculate the lattice phonons and the electron-phonon coupling of the
organic superconductor \kappa-(BEDT-TTF)_2 I_3, reproducing all available
experimental data connected to phonon dynamics. Low-frequency intra-molecular
vibrations are strongly mixed to lattice phonons. Both acoustic and optical
phonons are appreciably coupled to electrons through the modulation of the
hopping integrals (e-LP coupling). By comparing the results relevant to
superconducting \kappa- and \beta-(BEDT-TTF)_2 I_3, we show that
electron-phonon coupling is fundamental to the pairing mechanism. Both e-LP and
electron-molecular vibration (e-MV) coupling are essential to reproduce the
critical temperatures. The e-LP coupling is stronger, but e-MV is instrumental
to increase the average phonon frequency.Comment: 4 pages, including 4 figures. Published version, with Ref. 17
corrected after publicatio
Densidade de pragas e inimigos naturais em resposta ao tratamento de sementes de soja com inseticidas.
Objetivo: avaliar o efeito do tratamento de sementes de soja com inseticidas quÃmicos sobre a frequência densidade populacional diária acumulada de insetos-praga e artrópodes predadores da parte aérea da soja ao longo do desenvolvimento da cultura
Efeito da soja Bt sobre a frequência e densidade populacional de pragas e predadores.
Este trabalho tem por objetivo avaliar comparativamente a frequência e a densidade populacional acumulada de insetos fitófagos e de artrópodes predadores, em campos de soja não-transgênica, RR e Bt
Metal-insulator transition and charge ordering in the extended Hubbard model at one-quarter filling
We study with exact diagonalization the zero temperature properties of the
quarter-filled extended Hubbard model on a square lattice. We find that
increasing the ratio of the intersite Coulomb repulsion, , to the band width
drives the system from a metal to a charge ordered insulator. The evolution of
the optical conductivity spectrum with increasing is compared to the
observed optical conductivity of several layered molecular crystals with the
theta and beta'' crystal structures.Comment: 5 pages, 3 figure
Clone wars:asexual reproduction dominates in the invasive range of Tubastraea spp. (Anthozoa: Scleractinia) in the South-Atlantic Ocean
Although the invasive azooxanthellate corals Tubastraea coccinea and T. tagusensis are spreading quickly and outcompeting native species in the Atlantic Ocean, there is little information regarding the genetic structure and path of introduction for these species. Here we present the first data on genetic diversity and clonal structure from these two species using a new set of microsatellite markers. High proportions of clones were observed, indicating that asexual reproduction has a major role in the local population dynamics and, therefore, represents one of the main reasons for the invasion success. Although no significant population structure was found, results suggest the occurrence of multiple invasions for T. coccinea and also that both species are being transported along the coast by vectors such as oil platforms and monobouys, spreading these invasive species. In addition to the description of novel microsatellite markers, this study sheds new light into the invasive process of Tubastraea.Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de JaneiroConselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)NSF-OA (National Science Foundation)Univ Fed Rio de Janeiro, Dept Zool, Rio De Janeiro, BrazilUniv Hawaii Manoa, Hawaii Inst Marine Biol, Sch Ocean & Earth Sci & Technol, Kaneohe, HI USACoral Sol Res Technol Dev & Innovat Network, Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Inst Microbiol Paulo Goes, Rio De Janeiro, BrazilUniv Estado Rio de Janeiro, Dept Ecol, Rio De Janeiro, BrazilUniv Fed Sao Paulo, Dept Ciencias Mar, Santos, BrazilUniv Sao Paulo, Ctr Biol Marinha, Sao Sebastiao, BrazilUniv Fed Sao Paulo, Dept Ciencias Mar, Santos, BrazilCAPES: 1137/2010FAPERJ: E26/010.003031/2014FAPERJ: E26/201.286/2014CNPq: 305330/2010-1FAPESP: 2014/01332-0Web of Scienc
Towards a Computed-Aided Diagnosis System in Colonoscopy: Automatic Polyp Segmentation Using Convolution Neural Networks
Early diagnosis is essential for the successful treatment of bowel cancers including colorectal cancer (CRC), and capsule endoscopic imaging with robotic actuation can be a valuable diagnostic tool when combined with automated image analysis. We present a deep learning rooted detection and segmentation framework for recognizing lesions in colonoscopy and capsule endoscopy images. We restructure established convolution architectures, such as VGG and ResNets, by converting them into fully-connected convolution networks (FCNs), fine-tune them and study their capabilities for polyp segmentation and detection. We additionally use shape-from-shading (SfS) to recover depth and provide a richer representation of the tissue’s structure in colonoscopy images. Depth is incorporated into our network models as an additional input channel to the RGB information and we demonstrate that the resulting network yields improved performance. Our networks are tested on publicly available datasets and the most accurate segmentation model achieved a mean segmentation interception over union (IU) of 47.78% and 56.95% on the ETIS-Larib and CVC-Colon datasets, respectively. For polyp detection, the top performing models we propose surpass the current state-of-the-art with detection recalls superior to 90% for all datasets tested. To our knowledge, we present the first work to use FCNs for polyp segmentation in addition to proposing a novel combination of SfS and RGB that boosts performance
Cyclotron effective masses in layered metals
Many layered metals such as quasi-two-dimensional organic molecular crystals
show properties consistent with a Fermi liquid description at low temperatures.
The effective masses extracted from the temperature dependence of the magnetic
oscillations observed in these materials are in the range, m^*_c/m_e \sim 1-7,
suggesting that these systems are strongly correlated. However, the ratio
m^*_c/m_e contains both the renormalization due to the electron-electron
interaction and the periodic potential of the lattice. We show that for any
quasi-two-dimensional band structure, the cyclotron mass is proportional to the
density of states at the Fermi energy. Due to Luttinger's theorem, this result
is also valid in the presence of interactions. We then evaluate m_c for several
model band structures for the \beta, \kappa, and \theta families of
(BEDT-TTF)_2X, where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene) and X
is an anion. We find that for \kappa-(BEDT-TTF)_2X, the cyclotron mass of the
\beta-orbit, m^{*\beta}_c, is close to 2 m^{*\alpha}_c, where m^{*\alpha}_c is
the effective mass of the \alpha- orbit. This result is fairly insensitive to
the band structure details. For a wide range of materials we compare values of
the cyclotron mass deduced from band structure calculations to values deduced
from measurements of magnetic oscillations and the specific heat coefficient.Comment: 12 pages, 3 eps figure
Cue-induced cocaine craving enhances psychosocial stress and vice versa in chronic cocaine users.
Stress and craving, it has been found, contribute to the development and maintenance of and relapse in cocaine use disorder. Chronic cocaine users (CU), previous research has shown, display altered physiological responses to psychosocial stress and increased vegetative responding to substance-related cues. However, how psychosocial stress and cue-induced craving interact in relation to the CU's physiological responses remains largely unknown. We thus investigated the interaction between acute psychosocial stress and cocaine-cue-related reactivity in 47 CU and 38 controls. In a crossed and balanced design, the participants were randomly exposed to a video-based cocaine-cue paradigm and the Trier Social Stress Test (TSST) or vice versa to investigate possible mutually augmenting effects of both stressors on physiological stress responses. Over the course of the experimental procedure, plasma cortisol, ACTH, noradrenaline, subjective stress, and craving were assessed repeatedly. To estimate the responses during the cocaine-cue paradigm and TSST, growth models and discontinuous growth models were used. Overall, though both groups did not differ in their endocrinological responses to the TSST, CU displayed lower ACTH levels at baseline. The TSST did not elevate craving in CU, but when the cocaine-cue video was shown first, CU displayed an enhanced cortisol response to the subsequent TSST. In CU, cocaine-cues robustly evoked craving but no physiological stress response, while cue-induced craving was intensified after the TSST. Taken together, though CU did not show an altered acute stress response during the TSST, stress and craving together seemed to have mutually augmenting effects on their stress response
- …