153 research outputs found

    ERTS-1, earthquakes, and tectonic evolution in Alaska

    Get PDF
    In comparing seismicity patterns in Alaska with ERTS-1 imagery, it is striking to see the frequency with which earthquake epicenters fall on, or near, lineaments visible on the imagery. Often these lineaments prove to be tectonics faults which have been mapped in the field. But equally as often, existing geologic and tectonic maps show no evidence of these features. The remoteness and inaccessibility of most of Alaska is responsible, in large part, for the inadequacy of the mapping. ERTS-1 imagery is filling a vital need in providing much of the missing information, and is pointing out many areas of potential earthquake hazard. Earthquakes in central and south-central Alaska result when the northeastern corner of the north Pacific lithospheric plate underthrusts the continent. North of Mt. McKinley, the seismicity is continental in nature and of shallow origin, with earthquakes occurring on lineaments, and frequently at intersections of lineaments. The shallower events tend to align themselves with lineaments visible on the imagery

    Seismically active structural lineaments in south-central Alaska as seen on ERTS-1 imagery

    Get PDF
    The author has identified the following significant results. A mosaic of south-central Alaska composed of 19 ERTS-1 images, when compared with the seismicity pattern of the area, reveals that the larger earthquakes tend to fall on lineaments which are easily recognizable on the imagery. In most cases, these lineaments have not been mapped as faults. One particular lineament, which was the scene of three earthquakes of magnitude 4 or greater during 1972, passes very close to Anchorage

    Some aspects of active tectonism in Alaska as seen on ERTS-1

    Get PDF
    ERTS-1 imagery is proving to be exceptionally useful in delineating structural features in Alaska which have never been recognized on the ground. Previously unmapped features such as seismically active faults and major structural lineaments are especially evident. Among the more significant results of this investigation is the discovery of an active strand of the Denali fault. The new fault has a history of scattered seismicity and was the scene of a magnitude 4.8 earthquake on October 1, 1972. Perhaps of greater significance is the disclosure of a large scale conjugate fracture system north of the Alaska Range. This fracture system appears to result from compressive stress radiating outward from around the outside of the great bend of the Alaska Range at Mt. McKinley

    Evaluation of feasibility of mapping seismically active faults in Alaska

    Get PDF
    There are no author-identified significant results in this report

    Tectonic mapping in Alaska with ERTS-1 imagery

    Get PDF
    The author has identified the following significant results. A mosaic of ERTS-1 imagery for a portion of interior Alaska covering approximately 57,000 sq km has proved to be a valuable tool in identifying structural elements previously not recognized. Mapped faults are clearly recognizable and are found to be part of a larger system of faults and lineaments identified on the imagery. A previously unrecognized set of conjugate fractures imply regional compression in a NNW-SSE direction in agreement with known fault dislocations. Earthquakes have a marked tendency to occur at intersections of lineaments seen on the imagery

    From Brown-Peterson to continual distractor via operation span: A SIMPLE account of complex span

    Get PDF
    Three memory tasks—Brown-Peterson, complex span, and continual distractor—all alternate presentation of a to-be-remembered item and a distractor activity, but each task is associated with a different memory system, short-term memory, working memory, and long-term memory, respectively. SIMPLE, a relative local distinctiveness model, has previously been fit to data from both the Brown-Peterson and continual distractor tasks; here we use the same version of the model to fit data from a complex span task. Despite the many differences between the tasks, including unpredictable list length, SIMPLE fit the data well. Because SIMPLE posits a single memory system, these results constitute yet another demonstration that performance on tasks originally thought to tap different memory systems can be explained without invoking multiple memory systems

    The Use of Telehealth Technology in Assessing the Accuracy of Self-Reported Weight and the Impact of a Daily Immediate-Feedback Intervention among Obese Employees

    Get PDF
    Objective. To determine the accuracy of self-reported body weight prior to and following a weight loss intervention including daily self-weighing among obese employees. Methods. As part of a 6-month randomized controlled trial including a no-treatment control group, an intervention group received a series of coaching calls, daily self-weighing, and interactive telemonitoring. The primary outcome variable was the absolute discrepancy between self-reported and measured body weight at baseline and at 6 months. We used general linear mixed model regression to estimate changes and differences between study groups over time. Results. At baseline, study participants underreported their weight by an average of 2.06 (se = 0.33) lbs. The intervention group self-reported a smaller absolute body weight discrepancy at followup than the control group. Conclusions. The discrepancy between self-reported and measured body weight appears to be relatively small, may be improved through daily self-monitoring using immediate-feedback telehealth technology, and negligibly impacts change in body weight

    Panarchy theory for convergence

    Get PDF
    Coping with surprise and uncertainty resulting from the emergence of undesired and unexpected novelty or the sudden reorganization of systems at multiple spatiotemporal scales requires both a scientific process that can incorporate diverse expertise and viewpoints, and a scientific framework that can account for the structure and dynamics of interacting social-ecological systems (SES) and the inherent uncertainty of what might emerge in the future. We argue that combining a convergence scientific process with a panarchy framework provides a pathway for improving our understanding of, and response to, emergence. Emergent phenomena are often unexpected (e.g., pandemics, regime shifts) and can be highly disruptive, so can pose a significant challenge to the development of sustainable and resilient SES. Convergence science is a new approach promoted by the U.S. National Science Foundation for tackling complex problems confronting humanity through the integration of multiple perspectives, expertise, methods, tools, and analytical approaches. Panarchy theory is a framework useful for studying emergence, because it characterizes complex systems of people and nature as dynamically organized and structured within and across scales of space and time. It accounts for the fundamental tenets of complex systems and explicitly grapples with emergence, including the emergence of novelty, and the emergent property of social-ecological resilience. We provide an overview of panarchy, convergence science, and emergence. We discuss the significant data and methodological challenges of using panarchy in a convergence approach to address emergent phenomena, as well as state-of-the-art methods for overcoming them. We present two examples that would benefit from such an approach: climate change and its impacts on social-ecological systems, and the relationships between infectious disease and social-ecological systems
    corecore