52 research outputs found

    Study of ballistic mode comet Encke mission opportunities

    Get PDF
    An analysis was conducted of the space mission to intercept the comet Encke. The two basic types of flight geometry considered for the mission are described. The primary interactions between time-of-flight and performance characteristics are displayed. The representative spacecraft characteristics for the Titan 3/Centaur launch vehicle are tabulated. The navigation analyses for the two missions are developed to show: (1) assessment of the navigation feasibility of the missions, (2) determination of the total velocity budget for the trim maneuvers, and (3) evaluation of dispersions at comet encounter

    Quantifying loopy network architectures

    Get PDF
    Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the Asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.Comment: 17 pages, 8 figures. During preparation of this manuscript the authors became aware of the work of Mileyko at al., concurrently submitted for publicatio

    Flow Cytometry for Rapid Detection of Salmonella spp. in Seed Sprouts

    Full text link

    Cut trees in the topological analysis of branching patterns

    No full text

    Centrifugal-order distributions in binary topological trees

    No full text
    • …
    corecore