47 research outputs found

    A Rapid and Highly Sensitive Method of Non Radioactive Colorimetric In Situ Hybridization for the Detection of mRNA on Tissue Sections

    Get PDF
    Background: Non Radioactive colorimetric In Situ Hybridization (NoRISH) with hapten labeled probes has been widely used for the study of gene expression in development, homeostasis and disease. However, improvement in the sensitivity of the method is still needed to allow for the analysis of genes expressed at low levels. Methodology/Principal Findings: A stable, non-toxic, zinc-based fixative was tested in NoRISH experiments on sections of mouse embryos using four probes (Lhx6, Lhx7, ncapg and ret) that have different spatial patterns and expression levels. We showed that Z7 can successfully replace paraformaldehyde used so far for tissue fixation in NoRISH; the morphology of the cryosections of Z7-fixed tissues was excellent, and the fixation time required for tissues sized 1 cm was 1 hr instead of 24 hr for paraformaldehyde. The hybridization signal on the sections of the Z7-treated embryos always appeared earlier than that of the PFA-fixed embryos. In addition, a 50–60 % shorter detection time was observed in specimen of Z7-treated embryos, reducing significantly the time required to complete the method. Finally and most importantly, the strength of the hybridization signal on the sections of the Z7-treated embryos always compared favorably to that of the sections of PFAfixed embryos; these data demonstrate a significant improvement of the sensitivity the method that allows for the analysis of mRNAs that are barely or not detected by the standard colorimetric NoRISH method. Conclusions/Significance: Our NoRISH method provides excellent preservation of tissue morphology, is rapid, highl

    Evidence for genetic association of RORB with bipolar disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bipolar disorder, particularly in children, is characterized by rapid cycling and switching, making circadian clock genes plausible molecular underpinnings for bipolar disorder. We previously reported work establishing mice lacking the clock gene D-box binding protein (<it>DBP</it>) as a stress-reactive genetic animal model of bipolar disorder. Microarray studies revealed that expression of two closely related clock genes, <it>RAR</it>-related orphan receptors alpha (<it>RORA</it>) and beta (<it>RORB</it>), was altered in these mice. These retinoid-related receptors are involved in a number of pathways including neurogenesis, stress response, and modulation of circadian rhythms. Here we report association studies between bipolar disorder and single-nucleotide polymorphisms (SNPs) in <it>RORA </it>and <it>RORB</it>.</p> <p>Methods</p> <p>We genotyped 355 <it>RORA </it>and <it>RORB </it>SNPs in a pediatric cohort consisting of a family-based sample of 153 trios and an independent, non-overlapping case-control sample of 152 cases and 140 controls. Bipolar disorder in children and adolescents is characterized by increased stress reactivity and frequent episodes of shorter duration; thus our cohort provides a potentially enriched sample for identifying genes involved in cycling and switching.</p> <p>Results</p> <p>We report that four intronic <it>RORB </it>SNPs showed positive associations with the pediatric bipolar phenotype that survived Bonferroni correction for multiple comparisons in the case-control sample. Three <it>RORB </it>haplotype blocks implicating an additional 11 SNPs were also associated with the disease in the case-control sample. However, these significant associations were not replicated in the sample of trios. There was no evidence for association between pediatric bipolar disorder and any <it>RORA </it>SNPs or haplotype blocks after multiple-test correction. In addition, we found no strong evidence for association between the age-at-onset of bipolar disorder with any <it>RORA </it>or <it>RORB </it>SNPs.</p> <p>Conclusion</p> <p>Our findings suggest that clock genes in general and <it>RORB </it>in particular may be important candidates for further investigation in the search for the molecular basis of bipolar disorder.</p

    Plxdc2 Is a Mitogen for Neural Progenitors

    Get PDF
    The development of different brain regions involves the coordinated control of proliferation and cell fate specification along and across the neuraxis. Here, we identify Plxdc2 as a novel regulator of these processes, using in ovo electroporation and in vitro cultures of mammalian cells. Plxdc2 is a type I transmembrane protein with some homology to nidogen and to plexins. It is expressed in a highly discrete and dynamic pattern in the developing nervous system, with prominent expression in various patterning centres. In the chick neural tube, where Plxdc2 expression parallels that seen in the mouse, misexpression of Plxdc2 increases proliferation and alters patterns of neurogenesis, resulting in neural tube thickening at early stages. Expression of the Plxdc2 extracellular domain alone, which can be cleaved and shed in vivo, is sufficient for this activity, demonstrating a cell non-autonomous function. Induction of proliferation is also observed in cultured embryonic neuroepithelial cells (ENCs) derived from E9.5 mouse neural tube, which express a Plxdc2-binding activity. These experiments uncover a direct molecular activity of Plxdc2 in the control of proliferation, of relevance in understanding the role of this protein in various cancers, where its expression has been shown to be altered. They also implicate Plxdc2 as a novel component of the network of signalling molecules known to coordinate proliferation and differentiation in the developing nervous system

    Cyclic Expression of Lhx2 Regulates Hair Formation

    Get PDF
    Hair is important for thermoregulation, physical protection, sensory activity, seasonal camouflage, and social interactions. Hair is generated in hair follicles (HFs) and, following morphogenesis, HFs undergo cyclic phases of active growth (anagen), regression (catagen), and inactivity (telogen) throughout life. The transcriptional regulation of this process is not well understood. We show that the transcription factor Lhx2 is expressed in cells of the outer root sheath and a subpopulation of matrix cells during both morphogenesis and anagen. As the HFs enter telogen, expression becomes undetectable and reappears prior to initiation of anagen in the secondary hair germ. In contrast to previously published results, we find that Lhx2 is primarily expressed by precursor cells outside of the bulge region where the HF stem cells are located. This developmental, stage- and cell-specific expression suggests that Lhx2 regulates the generation and regeneration of hair. In support of this hypothesis, we show that Lhx2 is required for anagen progression and HF morphogenesis. Moreover, transgenic expression of Lhx2 in postnatal HFs is sufficient to induce anagen. Thus, our results reveal an alternative interpretation of Lhx2 function in HFs compared to previously published results, since Lhx2 is periodically expressed, primarily in precursor cells distinct from those in the bulge region, and is an essential positive regulator of hair formation

    Analysis of Area-Specific Expression Patterns of RORbeta, ER81 and Nurr1 mRNAs in Rat Neocortex by Double In Situ Hybridization and Cortical Box Method

    Get PDF
    BACKGROUND: The mammalian neocortex is subdivided into many areas, each of which exhibits distinctive lamina architecture. To investigate such area differences in detail, we chose three genes for comparative analyses, namely, RORbeta, ER81 and Nurr1, mRNAs of which have been reported to be mainly expressed in layers 4, 5 and 6, respectively. To analyze their qualitative and quantitative coexpression profiles in the rat neocortex, we used double in situ hybridization (ISH) histochemistry and cortical box method which we previously developed to integrate the data of different staining and individuals in a standard three-dimensional space. PRINCIPAL FINDINGS: Our new approach resulted in three main observations. First, the three genes showed unique area distribution patterns that are mostly complementary to one another. The patterns revealed by cortical box method matched well with the cytoarchitectonic areas defined by Nissl staining. Second, at single cell level, RORbeta and ER81 mRNAs were coexpressed in a subpopulation of layer 5 neurons, whereas Nurr1 and ER81 mRNAs were not colocalized. Third, principal component analysis showed that the order of hierarchical processing in the cortex correlates well with the expression profiles of these three genes. Based on this analysis, the dysgranular zone (DZ) in the somatosensory area was considered to exhibit a profile of a higher order area, which is consistent with previous proposal. CONCLUSIONS/SIGNIFICANCE: The tight relationship between the expression of the three layer specific genes and functional areas were revealed, demonstrating the usefulness of cortical box method in the study on the cerebral cortex. In particular, it allowed us to perform statistical evaluation and pattern matching, which would become important in interpreting the ever-increasing data of gene expression in the cortex

    Outbreak of Shigella sonnei infections in the Orthodox Jewish community of Antwerp, Belgium, April to August 200836530

    No full text
    In the beginning of April 2008 three cases of Shigella sonnei infection were identified among the Orthodox Jewish community of Antwerp, Belgium. We conducted a descriptive study and a household cohort study to identify potential risk factors. Stool samples were cultured and antibiotic susceptibility of the isolates was determined. Between April and August 2008, 42 cases were registered. All characterised isolates (n=20) shared an identical pulsed-field gel electrophoresis profile and were indistinguishable from one of the twelve main strains detected in Israel in 2008, where the index case&#039;s father had stayed before the outbreak. The secondary attack rate in households was 8.5% (95% confidence interval (CI): 4.3-12.7). Multivariate analysis identified the following risk factors for secondary spread: households with more than three children (adjusted relative risk (RR): 9.17; 95% CI: 1.21-69.13), children younger than five years (adjusted RR: 5.45; 95% CI: 2.44-12.62), and children younger than 12 years assisting in washing younger siblings (adjusted RR: 5.45; 95% CI: 2.44-12.17). Rigorous hand washing, use of disposable towels, information for parents and caregivers, and exclusion of symptomatic children from day care, preschool and school for a minimum of 48 hours were implemented</p
    corecore