60 research outputs found

    Analytic structure factors and pair-correlation functions for the unpolarized homogeneous electron gas

    Full text link
    We propose a simple and accurate model for the electron static structure factors (and corresponding pair-correlation functions) of the 3D unpolarized homogeneous electron gas. Our spin-resolved pair-correlation function is built up with a combination of analytic constraints and fitting procedures to quantum Monte Carlo data, and, in comparison to previous attempts (i) fulfills more known integral and differential properties of the exact pair-correlation function, (ii) is analytic both in real and in reciprocal space, and (iii) accurately interpolates the newest, extensive diffusion-Monte Carlo data of Ortiz, Harris and Ballone [Phys. Rev. Lett. 82, 5317 (1999)]. This can be of interest for the study of electron correlations of real materials and for the construction of new exchange and correlation energy density functionals.Comment: 14 pages, 5 figures, submitted to Phys. Rev.

    The dissociation catastrophe in fluctuating-charge models and its implications for the concept of atomic electronegativity

    Full text link
    We have recently developed the QTPIE (charge transfer with polarization current equilibration) fluctuating-charge model, a new model with correct dissociation behavior for nonequilibrium geometries. The correct asymptotics originally came at the price of representing the solution in terms of charge-transfer variables instead of atomic charges. However, we have found an exact reformulation of fluctuating-charge models in terms of atomic charges again, which is made possible by the symmetries of classical electrostatics. We show how this leads to the distinguishing between two types of atomic electronegativities in our model. While one is a intrinsic property of individual atoms, the other takes into account the local electrical surroundings. This suggests that this distinction could resolve some confusion surrounding the concept of electronegativity as to whether it is an intrinsic property of elements, or otherwise.Comment: 17 pages, prepared for "Proceedings of QSCP-XIII" in Prog. Theor. Chem. Phy

    Group Living Enhances Individual Resources Discrimination: The Use of Public Information by Cockroaches to Assess Shelter Quality

    Get PDF
    In group-living organisms, consensual decision of site selection results from the interplay between individual responses to site characteristics and to group-members. Individuals independently gather personal information by exploring their environment. Through social interaction, the presence of others provides public information that could be used by individuals and modulates the individual probability of joining/leaving a site. The way that individual's information processing and the network of interactions influence the dynamics of public information (depending on population size) that in turn affect discrimination in site quality is a central question. Using binary choice between sheltering sites of different quality, we demonstrate that cockroaches in group dramatically outperform the problem-solving ability of single individual. Such use of public information allows animals to discriminate between alternatives whereas isolated individuals are ineffective (i.e. the personal discrimination efficiency is weak). Our theoretical results, obtained from a mathematical model based on behavioral rules derived from experiments, highlight that the collective discrimination emerges from competing amplification processes relying on the modulation of the individual sheltering time without shelters comparison and communication modulation. Finally, we well demonstrated here the adaptive value of such decision algorithm. Without any behavioral change, the system is able to shift to a more effective strategy when alternatives are present: the modification of the spatio-temporal distributions of individuals leading to the collective selection of the best resource. This collective discrimination implying such parsimonious and widespread mechanism must be shared by many group living-species

    Social density processes regulate the functioning and performance of foraging human teams

    Get PDF
    Social density processes impact the activity and order of collective behaviours in a variety of biological systems. Much effort has been devoted to understanding how density of people affects collective human motion in the context of pedestrian flows. However, there is a distinct lack of empirical data investigating the effects of social density on human behaviour in cooperative contexts. Here, we examine the functioning and performance of human teams in a central-place foraging arena using high-resolution GPS data. We show that team functioning (level of coordination) is greatest at intermediate social densities, but contrary to our expectations, increased coordination at intermediate densities did not translate into improved collective foraging performance, and foraging accuracy was equivalent across our density treatments. We suggest that this is likely a consequence of foragers relying upon visual channels (local information) to achieve coordination but relying upon auditory channels (global information) to maximise foraging returns. These findings provide new insights for the development of more sophisticated models of human collective behaviour that consider different networks for communication (e.g. visual and vocal) that have the potential to operate simultaneously in cooperative contexts

    Signalling and the Evolution of Cooperative Foraging in Dynamic Environments

    Get PDF
    Understanding cooperation in animal social groups remains a significant challenge for evolutionary theory. Observed behaviours that benefit others but incur some cost appear incompatible with classical notions of natural selection; however, these behaviours may be explained by concepts such as inclusive fitness, reciprocity, intra-specific mutualism or manipulation. In this work, we examine a seemingly altruistic behaviour, the active recruitment of conspecifics to a food resource through signalling. Here collective, cooperative behaviour may provide highly nonlinear benefits to individuals, since group functionality has the potential to be far greater than the sum of the component parts, for example by enabling the effective tracking of a dynamic resource. We show that due to this effect, signalling to others is an evolutionarily stable strategy under certain environmental conditions, even when there is a cost associated to this behaviour. While exploitation is possible, in the limiting case of a sparse, ephemeral but locally abundant nutrient source, a given environmental profile will support a fixed number of signalling individuals. Through a quantitative analysis, this effective carrying capacity for cooperation is related to the characteristic length and time scales of the resource field

    Sin Nombre Virus and Rodent Species Diversity: A Test of the Dilution and Amplification Hypotheses

    Get PDF
    BACKGROUND:Species diversity is proposed to greatly impact the prevalence of pathogens. Two predominant hypotheses, the "Dilution Effect" and the "Amplification Effect", predict divergent outcomes with respect to the impact of species diversity. The Dilution Effect predicts that pathogen prevalence will be negatively correlated with increased species diversity, while the Amplification Effect predicts that pathogen prevalence will be positively correlated with diversity. For many host-pathogen systems, the relationship between diversity and pathogen prevalence has not be empirically examined. METHODOLOGY/PRINCIPAL FINDINGS:We tested the Dilution and Amplification Effect hypotheses by examining the prevalence of Sin Nombre virus (SNV) with respect to diversity of the nocturnal rodent community. SNV is directly transmitted primarily between deer mice (Peromyscus maniculatus). Using mark-recapture sampling in the Spring and Fall of 2003-2005, we measured SNV prevalence in deer mice at 16 landscape level sites (3.1 hectares each) that varied in rodent species diversity. We explored several mechanisms by which species diversity may affect SNV prevalence, including reduced host density, reduced host persistence, the presence of secondary reservoirs and community composition. We found a negative relationship between species diversity and SNV prevalence in deer mice, thereby supporting the Dilution Effect hypothesis. Deer mouse density and persistence were lower at sites with greater species diversity; however, only deer mouse persistence was positively correlated with SNV prevalence. Pinyon mice (P. truei) may serve as dilution agents, having a negative effect on prevalence, while kangaroo rats (Dipodomys ordii), may have a positive effect on the prevalence of SNV, perhaps through effects on deer mouse behavior. CONCLUSIONS/SIGNIFICANCE:While previous studies on host-pathogen systems have found patterns of diversity consistent with either the Dilution or Amplification Effects, the mechanisms by which species diversity influences prevalence have not been investigated. Our study indicates that changes in host persistence, coupled with interspecific interactions, are important mechanisms through which diversity may influence patterns of pathogens. Our results reveal the complexity of rodent community interactions with respect to SNV dynamics

    Retrospective application of transposon-directed insertion-site sequencing to investigate niche-specific virulence of Salmonella Typhimurium in cattle.

    Get PDF
    Background: Salmonella enterica subspecies enterica is an animal and zoonotic pathogen of global importance. Cattle are a significant reservoir of human non-typhoidal salmonellosis and can suffer enteric and systemic disease owing to the ability of Salmonella to survive within the bovine lymphatic system and intestines. Contamination of food can occur due to the incorporation of contaminated peripheral lymph nodes or by direct contamination of carcasses with gut contents. It is essential to understand the mechanisms used by Salmonella to enter and persist within the bovine lymphatic system and how they differ from those required for intestinal colonization to minimize zoonotic infections. Results: Transposon-directed insertion site sequencing (TraDIS) was applied to pools of mutants recovered from mesenteric lymph nodes (MLNs) draining the distal ileum of calves after oral inoculation with a library of 8550 random S. Typhimurium mini-Tn5Km2 mutants in pools of 475 mutants per calf. A total of 8315 mutants representing 2852 different genes were detected in MLNs and their in vivo fitness was calculated. Using the same improved algorithm for analysis of transposon-flanking sequences, the identity and phenotype of mutants recovered from the distal ileal mucosa of the same calves was also defined, enabling comparison with previously published data and of mutant phenotypes across the tissues. Phenotypes observed for the majority of mutants were highly significantly correlated in the two tissues. However, 32 genes were identified in which transposon insertions consistently resulted in differential fitness in the ileal wall and MLNs, suggesting niche-specific roles for these genes in pathogenesis. Defined null mutations affecting ptsN and spvC were confirmed to result in tissue-specific phenotypes in calves, thus validating the TraDIS dataset. Conclusions: This validation of the role of thousands of Salmonella genes and identification of genes with niche-specific roles in a key target species will inform the design of control strategies for bovine salmonellosis and zoonotic infections, for which efficacious and cross-protective vaccines are currently lacking
    • …
    corecore