22,169 research outputs found

    On the spin-isospin decomposition of nuclear symmetry energy

    Full text link
    The decomposition of nuclear symmetry energy into spin and isospin components is discussed to elucidate the underlying properties of the NN bare interaction. This investigation was carried out in the framework of the Brueckner-Hartree-Fock theory of asymmetric nuclear matter with consistent two and three body forces. It is shown the interplay among the various two body channels in terms of isospin singlet and triplet components as well as spin singlet and triplet ones. The broad range of baryon densities enables to study the effects of three body force moving from low to high densities.Comment: 8 pages, 4 figure

    Steps on current-voltage characteristics of a silicon quantum dot covered by natural oxide

    Full text link
    Considering a double-barrier structure formed by a silicon quantum dot covered by natural oxide with two metallic terminals, we derive simple conditions for a step-like voltage-current curve. Due to standard chemical properties, doping phosphorus atoms located in a certain domain of the dot form geometrically parallel current channels. The height of the current step typically equals to (1.2 pA)N, where N=0,1,2,3... is the number of doping atoms inside the domain, and only negligibly depends on the actual position of the dopants. The found conditions are feasible in experimentally available structures.Comment: 4 pages, 3 figure

    Comment on ``Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality"

    Full text link
    In this comment, we investigate a common used algorithm proposed by Newman [M. E. J. Newman, Phys. Rev. E {\bf 64}, 016132(2001)] to calculate the betweenness centrality for all vertices. The inaccurateness of Newman's algorithm is pointed out and a corrected algorithm, also with O(MNMN) time complexity, is given. In addition, the comparison of calculating results for these two algorithm aiming the protein interaction network of Yeast is shown.Comment: 3 pages, 2 tables, and 2 figure

    The electric dipole moment of the neutron from 2+1 flavor lattice QCD

    Get PDF
    We compute the electric dipole moment d_n of the neutron from a fully dynamical simulation of lattice QCD with 2+1 flavors of clover fermions and nonvanishing theta term. The latter is rotated into the pseudoscalar density in the fermionic action using the axial anomaly. To make the action real, the vacuum angle theta is taken to be purely imaginary. The physical value of d_n is obtained by analytic continuation. We find d_n = -3.8(2)(9) x 10^{-16} [theta e cm], which, when combined with the experimental limit on d_n, leads to the upper bound theta < 7.6 x 10^{-11}.Comment: 12 pages, 8 figures, matches PRL published versio

    Conservation Properties in the Time-Dependent Hartree Fock Theory

    Full text link
    We discuss the conservation of angular momentum in nuclear time-dependent Hartree-Fock calculations for a numerical representation of wave functions and potentials on a three-dimensional cartesian grid. Free rotation of a deformed nucleus performs extremely well even for relatively coarse spatial grids. Heavy ion collisions produce a highly excited compound system associated with substantial nucleon emission. These emitted nucleons reach the bounds of the numerical box which leads to a decrease of angular momentum. We discuss strategies to distinguish the physically justified loss from numerical artifacts.Comment: 4 page

    Approximation Algorithms for the Capacitated Domination Problem

    Full text link
    We consider the {\em Capacitated Domination} problem, which models a service-requirement assignment scenario and is also a generalization of the well-known {\em Dominating Set} problem. In this problem, given a graph with three parameters defined on each vertex, namely cost, capacity, and demand, we want to find an assignment of demands to vertices of least cost such that the demand of each vertex is satisfied subject to the capacity constraint of each vertex providing the service. In terms of polynomial time approximations, we present logarithmic approximation algorithms with respect to different demand assignment models for this problem on general graphs, which also establishes the corresponding approximation results to the well-known approximations of the traditional {\em Dominating Set} problem. Together with our previous work, this closes the problem of generally approximating the optimal solution. On the other hand, from the perspective of parameterization, we prove that this problem is {\it W[1]}-hard when parameterized by a structure of the graph called treewidth. Based on this hardness result, we present exact fixed-parameter tractable algorithms when parameterized by treewidth and maximum capacity of the vertices. This algorithm is further extended to obtain pseudo-polynomial time approximation schemes for planar graphs

    Quantum transport theory for nanostructures with Rashba spin-orbital interaction

    Get PDF
    We report on a general theory for analyzing quantum transport through devices in the Metal-QD-Metal configuration where QD is a quantum dot or the device scattering region which contains Rashba spin-orbital and electron-electron interactions. The metal leads may or may not be ferromagnetic, they are assumed to weakly couple to the QD region. Our theory is formulated by second quantizing the Rashba spin-orbital interaction in spectral space (instead of real space), and quantum transport is then analyzed within the Keldysh nonequilibrium Green's function formalism. The Rashba interaction causes two main effects to the Hamiltonian: (i) it gives rise to an extra spin-dependent phase factor in the coupling matrix elements between the leads and the QD; (ii) it gives rise to an inter-level spin-flip term but forbids any intra-level spin-flips. Our formalism provides a starting point for analyzing many quantum transport issues where spin-orbital effects are important. As an example, we investigate transport properties of a Aharnov-Bohm ring in which a QD having Rashba spin-orbital and e-e interactions is located in one arm of the ring. A substantial spin-polarized conductance or current emerges in this device due to a combined effect of a magnetic flux and the Rashba interaction. The direction and strength of the spin-polarization are shown to be controllable by both the magnetic flux and a gate voltage.Comment: 12 pages, 8 figure

    Density Evolution in the New Modified Chaplygin Gas Model

    Full text link
    In this paper, we have considered new modified Chaplygin gas (NMCG) model which interpolates between radiation at early stage and Λ\LambdaCDM at late stage. This model is regarded as a unification of dark energy and dark matter (with general form of matter). We have derived the density parameters from the equation of motion for the interaction between dark energy and dark matter. Also we have studied the evolution of the various components of density parameters.Comment: 6 Latex pages, 4 figures, RevTex styl

    On the Threshold of Intractability

    Full text link
    We study the computational complexity of the graph modification problems Threshold Editing and Chain Editing, adding and deleting as few edges as possible to transform the input into a threshold (or chain) graph. In this article, we show that both problems are NP-complete, resolving a conjecture by Natanzon, Shamir, and Sharan (Discrete Applied Mathematics, 113(1):109--128, 2001). On the positive side, we show the problem admits a quadratic vertex kernel. Furthermore, we give a subexponential time parameterized algorithm solving Threshold Editing in 2O(klogk)+poly(n)2^{O(\surd k \log k)} + \text{poly}(n) time, making it one of relatively few natural problems in this complexity class on general graphs. These results are of broader interest to the field of social network analysis, where recent work of Brandes (ISAAC, 2014) posits that the minimum edit distance to a threshold graph gives a good measure of consistency for node centralities. Finally, we show that all our positive results extend to the related problem of Chain Editing, as well as the completion and deletion variants of both problems
    corecore