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We compute the electric dipole moment dn of the neutron from a fully dynamical simulation of lattice
QCD with 2þ 1 flavors of clover fermions and nonvanishing θ term. The latter is rotated into a
pseudoscalar density in the fermionic action using the axial anomaly. To make the action real, the vacuum
angle θ is taken to be purely imaginary. The physical value of dn is obtained by analytic continuation.
We find dn ¼ −3.9ð2Þð9Þ × 10−16 θ e cm, which, when combined with the experimental limit on dn,
leads to the upper bound jθj≲ 7.4 × 10−11.
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Introduction.—The electric dipole moment dn of the
neutron provides a unique and sensitive probe to physics
beyond the standard model. It has played an important part
over many decades in shaping and constraining numerous
models of CP violation. While the CP violation observed
inK and Bmeson decays can be accounted for by the phase
of the CKM matrix, the baryon asymmetry of the universe
cannot be described by this phase alone, suggesting that
there are additional sources of CP violation awaiting
discovery.
QCD allows for CP-violating effects that propagate into

the hadronic sector via the so-called θ term Sθ in the action,

S ¼ S0 þ Sθ; Sθ ¼ iθQ; ð1Þ
where (in lattice notation)

Q ¼ −
1

64π2
ϵμνρσa4

X
x

Fa
μνFa

ρσ ∈ Z ð2Þ

is the topological charge, and S0 is the standard CP-
preserving QCD action. Thus, there is the possibility of
strong CP violation arising from a nonvanishing vacuum
angle θ. In awide class of GUTs the diagrams that generate a
high baryon to photon asymmetry contribute to the renorm-
alization of θ, and hence to the electric dipole moment
of the neutron. With the increasingly precise experimental
efforts to observe the electric dipole moment [1–3], it is
important to have a rigorous calculation directly fromQCD.
It is practically impossible to perform Monte Carlo

simulations with the action (1) in four dimensions for

any sensible definition of the topological charge and any
angle jθj > 0. Absorbing the θ term into the observable
[4,5] is not a viable alternative, as hQ2i is found not to
vanish if one of the quark masses is taken to zero at present
values of the coupling. In Fig. 1 we show the topological
susceptibility χt ¼ hQ2i=V on 323 × 64 lattices taken from
Ref. [6] at spacing a ¼ 0.074 fm. The charge Q has been
computed from the Wilson flow [7] at flow time t0. Similar
results have been reported in Ref. [8]. As a result, dn will
not vanish in the limit of zero quark mass either, except

FIG. 1 (color online). The topological susceptibility on the
SU(3) symmetric line mu ¼ md ¼ ms as a function of m2

π in
units of t0.
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perhaps for chiral fermions. Exactly that was found in
Ref. [9]. This precludes a meaningful extrapolation of dn to
the physical point. There are indications that the situation
will improve for lattice spacings a≲ 0.04 fm only [8].
It so happens that the θ term can be chirally rotated into

the fermionic part of the action, making use of the axial
anomaly [10]. The outcome of that is

Sθ ¼ −
i
3
θm̂a4

X
x

ðūγ5uþ d̄γ5dþ s̄γ5sÞ;

m̂−1 ¼ 1

3
ðm−1

u þm−1
d þm−1

s Þ ð3Þ

for three quark flavors with nondegenerate masses. This
action lends itself to numerical simulations for imaginary
values of θ [11]. As we are mainly interested in small
values of θ, the results can be analytically continued to real
numbers without difficulties, assuming that the theory is
analytic in the vicinity of θ ¼ 0.
In this Letter we present an entirely dynamical calcu-

lation of the electric dipole moment of the neutron on the
lattice. This is a challenging task. As dn quickly diminishes
towards physical quark masses, the angle θ has to be chosen
increasingly larger to compensate for that. This in turn
leads to a substantial increase of zero modes, which slows
down the simulations substantially and eventually will
result in exceptional configurations [12].
The simulation.—We follow Refs. [6,13] and start from

the SU(3) flavor symmetric point mu ¼ md ¼ ms ≡m0,
where mπ ¼ mK . Our strategy has been to keep the singlet
quark mass m̄ ¼ ðmu þmd þmsÞ=3 fixed at its physical
value, while δmq ¼ mq − m̄ is varied. As we move from
the symmetric point to the physical point along the path
m̄ ¼ const, the s quark becomes heavier, while the u and
d quarks become lighter. These two effects tend to cancel
in any flavor singlet quantity, such as the topological
susceptibility χt ¼ hQ2i=V. The cancellation is perfect at
the symmetric point [6].
We assume u and d quarks to be mass degenerate,

writing ml ¼ mu ¼ md. The vacuum angle is taken purely
imaginary,

θ ¼ iθ̄: ð4Þ
This leads us to consider the action

Sθ ¼ θ̄
mlms

2ms þml
a4
X
x

ðūγ5uþ d̄γ5dþ s̄γ5sÞ; ð5Þ

which is real and vanishes at ml ¼ 0 as well as ms ¼ 0.
Our fermion action has single-level stout smearing

for the hopping terms together with unsmeared links
for the clover term. With the (tree level) Symanzik
improved gluon action this constitutes the Stout Link
Nonperturbative Clover or SLiNC action [14]. To cancel
OðaÞ terms the clover coefficient cSW has been computed

nonperturbatively. For each flavor the fermion action to be
simulated reads

Sq ¼ Sq0 þ Sqθ

¼ a4
X
x

q̄

�
D −

1

4
cSWσμνFμν þmq þ

λ

2a
γ5

�
q; ð6Þ

where D is the Wilson Dirac operator and

λ ¼ θ̄2a
mlms

2ms þml
: ð7Þ

The extra term in the action (6) can be treated in a similar
way as we treat disconnected diagrams in calculations of
singlet hadron matrix elements and renormalization factors
[15,16]. We use BQCD [17] to update the gauge fields. The
calculations are done on 243 × 48 lattices at β ¼ 5.50.
At this coupling the lattice spacing was found to be a ¼
0.074ð2Þ fm [18], using the center of mass of the nucleon
octet to set the scale. The parameters of the simulations
are listed in Table I. Each ensemble consists of Oð2000Þ
trajectories. The quark masses on the m̄ ¼ const line are
given by mq ¼ 1=2κq − 1=2κ0;c with κ0;c ¼ 0.12110 [6].
We expect our ensembles to carry nonvanishing topo-

logical charge, hQi∝ −θ̄hQ2ic, with hQ2ic¼hQ2i−hQi2
∝ m̂ [19]. In Fig. 2 we show the charge histogram for
ensemble 4, together with a Gaussian fit. As before, the

TABLE I. The simulation parameters with m̄ ¼ const. The
hadron masses refer to λ ¼ 0.

# κl κs amπ amK amN λ

1 0.120 90 0.120 90 0.1747(5) 0.1747(5) 0.4673(27) 0.003
2 0.120 90 0.120 90 0.1747(5) 0.1747(5) 0.4673(27) 0.005
3 0.121 04 0.120 62 0.1349(5) 0.1897(4) 0.4267(50) 0.003
4 0.121 04 0.120 62 0.1349(5) 0.1897(4) 0.4267(50) 0.005

FIG. 2 (color online). The topological charge distribution
pðQÞ [with

P
QpðQÞ ¼ 1] of ensemble 4 at κl ¼ 0.12104,

κs ¼ 0.12062, and λ ¼ 0.005, together with a Gaussian fit.
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topological charge has been computed from the Wilson
flow at flow time t0 [7]. Evidently, Q peaks at negative
values. In Fig. 3 we show hQi as a function of θ̄ for both
sets of quark masses, together with linear plus cubic fits.
We find the slopes of the individual curves to be approx-
imately proportional to m̂, as expected.
The evaluation.—At nonvanishing vacuum angle θ the

nucleon matrix element of the electromagnetic current
reads in Euclidean space

hp0; s0jJμjp; si ¼ ūθð~p0; s0ÞJ μuθð~p; sÞ; ð8Þ
where

J μ ¼ γμFθ
1ðq2Þ þ σμνqν

Fθ
2ðq2Þ
2mθ

N
þ ðγqqμ − γμq2Þγ5Fθ

Aðq2Þ

þ σμνqνγ5
Fθ
3ðq2Þ
2mθ

N
; ð9Þ

and q ¼ p0 − p, q2 ¼ ð~p0 − ~pÞ2 − ðEθ0 − EθÞ2. In the θ
vacuum the Dirac spinors pick up a phase [20],

uθð~p; sÞ ¼ eiαðθÞγ5uð~p; sÞ;
ūθð~p; sÞ ¼ ūð~p; sÞeiαðθÞγ5 ; ð10Þ

so that

X
s

uθð~p; sÞūθð~p; sÞ ¼ eiαðθÞγ5
�
−iγpþmθ

N

2Eθ
N

�
eiαðθÞγ5 ;

ð11Þ

with γp ¼ ~γ ~pþiEγ4. The electric dipole moment is
given by

dn ¼
eFθ

3ð0Þ
2mθ

N
: ð12Þ

The topological θ term (1) polarizes the vacuum.
Diagrammatically, it solely contributes to internal gluon
lines. Similarly, the flavor-singlet pseudoscalar density in
Eqs. (5) and (6) interacts with the nucleon through quark-
line disconnected diagrams only [21,22]. This is sketched
in Fig. 4. Consequently, the quark propagators in the
nucleon matrix element (8) are computed with the action
Sq0 , neglecting the Sqθ term.
We denote the two-point function of a nucleon of

momentum ~p in the θ vacuum by Gθ
NNðt; ~pÞ. The phase

factor α is obtained from the ratio of two-point functions

Tr½Gθ
NNðt; 0ÞΓ4� ¼

1þ cos 2αðθÞ
2

1

2
jZN j2e−mθ

Nt;

Tr½Gθ
NNðt; 0ÞΓ4γ5� ¼ i

sin 2αðθÞ
2

1

2
jZN j2e−mθ

Nt; ð13Þ

where Γ4 ¼ ð1þ γ4Þ=2. Equation (13) defines mθ
N , the

nucleon mass for the action (6), and ZN . The form factor
F3ðq2Þ can be extracted from the ratio of three-point and
two-point functions, generalizing the methods developed
in Ref. [23]

Rμðt0; t; ~p0; ~pÞ ¼
GθΓ

NJμN
ðt0; t; ~p0; ~pÞ

Tr½Gθ
NNðt0; ~p0ÞΓ4�

�
Tr½Gθ

NNðt; ~p0ÞΓ4�Tr½Gθ
NNðt0; ~p0ÞΓ4�Tr½Gθ

NNðt0 − t; ~pÞΓ4�
Tr½Gθ

NNðt; ~pÞΓ4�Tr½Gθ
NNðt0; ~pÞΓ4�Tr½Gθ

NNðt0 − t; ~p0ÞΓ4�
�

1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eθ0Eθ

ðEθ0 þmθ
NÞðEθ þmθ

NÞ

s
FðΓ;J μÞ; ð14Þ

where GθΓ
NJμN

ðt0; t; ~p0; ~pÞ is the three-point function, with t0 being the time location of the nucleon sink and t the time
location of the current insertion, and the function FðΓ;J μÞ is

FIG. 3 (color online). The average charge hQi as a function of θ
for ensembles 1 and 2 (filled circle) and ensembles 3 and 4 (filled
square), together with linear plus cubic fits.

FIG. 4. Disconnected insertion of the pseudoscalar density to
lowest order. Gluon lines are omitted.
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FðΓ;J μÞ ¼
1

4
TrΓ

�
eiαðθÞγ5

Eθ0γ4 − i~γ~p0 þmθ
N

Eθ0 eiαðθÞγ5
�

× J μ

�
eiαðθÞγ5

Eθγ4 − i~γ ~pþmθ
N

Eθ eiαðθÞγ5
�
;

ð15Þ
with J μ given in Eq. (9). The three-point functions are
calculated for various choices of nucleon polarization,
Γ ¼ Γ4, iΓ4γ5γ1, iΓ4γ5γ2, and iΓ4γ5γ3. For Jμ we take
the local vector current q̄γμq.
Results.—In physical units, the pion and kaon masses

are

κl κs mπ ½MeV� mK ½MeV�
0.12090 0.12090 465ð13Þ 465ð13Þ
0.12104 0.12062 360ð10Þ 505ð14Þ

ð16Þ
(It is to be noted that the pseudoscalar mass at our
flavor symmetric point is somewhat larger than the physical

value
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

K0 þm2
Kþ þm2

πþÞ=3
q

¼ 413 MeV.) To a good

approximation 2m2
Kþm2

π ¼ const, in accord with the lead-
ing order chiral expansion 2m2

K þm2
π ¼ 6B0m̄.

At imaginary values of θ, both αðθÞ and Fθ
3 are

imaginary. Thus, we can write

αðθÞ ¼ iᾱðθ̄Þ; Fθ
3 ¼ iF̄θ̄

3: ð17Þ
In Fig. 5 we show the results for the phase factor ᾱðθ̄Þ, and
in Fig. 6 we show the form factor F̄θ̄;n

3 of the neutron

divided by Fθ̄;p
1 of the proton for ensemble 2. If the radii of

the two form factors are close to one another, the q2

dependence is largely canceled out in the ratio. Indeed, the
ratio shows only a mild q2 dependence and thus may be

extrapolated linearly to q2 ¼ 0. The extrapolated value is

the renormalized form factor F̄θ̄;nR
3 ð0Þ, using the fact that

F̄θ̄;pR
1 ð0Þ ¼ 1, from which we obtain the electric dipole

moment (12). In Fig. 7 we show our results for F̄θ̄;nR
3 ð0Þ as a

function of θ̄ for our two sets of quark masses. It should be
noted that the actual expansion parameter is λ, given in
Eq. (7), which is a very small number.
Ultimately, we are only interested in F̄θ̄

3ð0Þ (we drop the
superscripts n; R on F3 from now on) at very small values
of θ̄. Even so, we do not have sufficient data to constrain the
extrapolation of F̄θ̄

3ð0Þ to θ̄ ¼ 0. This will result in a
systematic error. To estimate the error, we have employed
a linear plus cubic fit Aθ̄ þ Bθ̄3, a Padé fit Aθ̄=ð1þ Bθ̄2Þ,
allowing for corrections of Oðθ̄5Þ and higher, as well as a
linear fit Aθ̄, to the lowest θ̄ point each. We identify the
central value of A with the derivative of F̄θ̄

3ð0Þ at θ̄ ¼ 0,

F̄ð1Þ
3 ð0Þ. The coefficient A of the linear plus cubic fit shown

FIG. 5 (color online). The phase factor ᾱðθ̄Þ as a function of θ̄
for our two sets of quark masses.

FIG. 6 (color online). The ratio of form factors F̄θ̄;n
3 =Fθ̄;p

1 for
κl ¼ κs ¼ 0.12090 and λ ¼ 0.005.

FIG. 7 (color online). The renormalized form factor F̄θ̄;nR
3 ð0Þ as

a function of θ̄, together with a linear plus cubic extrapolation,

F̄θ̄;nR
3 ð0Þ ¼ Aθ̄ þ Bθ̄3, to θ̄ ¼ 0.
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in Fig. 7 turns out to be close to the central value. The error

of F̄ð1Þ
3 ð0Þ is estimated to be the largest deviation of A from

the central value. After continuing θ and Fθ
3ð0Þ back to real

values, we finally obtain, writing dn ¼ eFð1Þ
3 ð0Þθ=2mN ,

mπ ½MeV� mK ½MeV� dn ½e fm θ�
465ð13Þ 465ð13Þ −0.0297ð38Þ
360ð10Þ 505ð14Þ −0.0215ð25Þ:

ð18Þ

To extrapolate Eq. (18) to the physical point, we make use of
the analytic expressions derived from covariant Uð3ÞL×
Uð3ÞR baryon chiral perturbation theory in Ref. [24] to
NLO, with the additional constraint 2m2

K þm2
π ¼ const ∝

m̄. This basically involves one free low-energy constant,
waðμÞ, only. A fit to the lattice data gives waðμ ¼ 1 GeVÞ ¼
0.04ð1Þ GeV−1. The result of the fit is shown in Fig. 8. Note
that dn vanishes at 2m2

K −m2
π ¼ 0 due to the constraint

m̄ ¼ const. At the physical point this finally leads to

dn ¼ −0.0039ð2Þð9Þ ½e fm θ�: ð19Þ

The first error is purely statistical. The second error is a
conservative estimate of NNLO effects. It covers
the naive result from a polynomial extrapolation,
dn ¼ −0.0043 ½e fm θ�.
Our result (19) translates into constraints onCP violating

contributions to the action at the quark and gluon level.
The current experimental bound on the electric dipole
moment of the neutron is [25] jdnN j ≤ 2.9 × 10−13 ½e fm�.
Combining this bound with Eq. (19), we arrive at the upper
bound on θ,

jθj≲ 7.4 × 10−11: ð20Þ

Conclusions.—It should be noted that in this explo-
ratory work we have not included contributions from

disconnected insertions of the electromagnetic current.
However, since these contributions vanish exactly at the
flavor symmetric point, we do not expect them to have a
significant effect on our conclusions. It remains to be seen
how big they are at the physical point.
The vacuum angle θ renormalizes as θR ¼ ðZS

S=ZPÞθ,
where ZS

S and ZP are the renormalization constants of the
flavor-singlet scalar density and the pseudoscalar density,
respectively. In the continuum ZS

S=ZP ¼ 1. A caveat of our
calculations is that clover fermions, thoughOðaÞ improved,
break chiral symmetry at finite lattice spacings. On our
present lattices ZS

S=ZP ¼ 0.8 − 0.9 [6,16,26], which might
imply a systematic error of Oð10%Þ.
To sum up, we have successfully computed the electric

dipole moment of the neutron dn from simulations of 2þ 1
flavor lattice QCD at imaginary vacuum angle θ, using the
axial anomaly to rotate the topological charge density into a
flavor singlet pseudoscalar density in the fermionic action.
Only disconnected insertions of the pseudoscalar density
contribute to the dipole moment, which required the
generation of new gauge field ensembles with the modified
action (6). Clearly, our results will have to be substantiated
by simulations on larger lattices, at smaller pion masses and
smaller lattice spacings, as well as for a wider range of λ
parameters. This is a challenging task, which we hope to
report on in due course.
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