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We report on a general theory for analyzing quantum transport through devices in the metal-QD-metal
configuration where QD is a quantum dot or the device-scattering region which contains Rashba spin-orbital
and electron-electron interactions. The metal leads may or may not be ferromagnetic, and they are assumed to
weakly couple to the QD region. Our theory is formulated by second quantizing the Rashba spin-orbital
interaction in spectral spacesinstead of real spaced, and quantum transport is then analyzed within the Keldysh
nonequilibrium Green’s function formalism. The Rashba interaction causes two main effects to the Hamil-
tonian: sid it gives rise to an extra spin-dependent phase factor in the coupling matrix elements between the
leads and the QD, andsii d it gives rise to an interlevel spin-flip term, but forbids any intralevel spin flips. Our
formalism provides a starting point for analyzing many quantum transport issues where spin-orbital effects are
important. As an example, we investigate the transport properties of a Aharnov-Bohm ring in which a QD
having a Rashba spin-orbital and electron-electron interactions is located in one arm of the ring. A substantial
spin-polarized conductance or current emerges in this device due to the combined effect of a magnetic flux and
the Rashba interaction. The direction and strength of the spin polarization are shown to be controllable by both
the magnetic flux and a gate voltage.
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I. INTRODUCTION

The spin-orbitsSOd interaction in semiconductors has at-
tracted great attention in recent years1–12 as it plays a very
interesting role in the emerging field of semiconductor spin-
tronics. SO interaction can couple the spin degree of freedom
of an electron to its orbital motion and vice versa, thereby
giving a useful handle for manipulating and controlling the
electron spin by external electric fields or gate voltages. The
SO is an intrinsic interaction having its origin in relativistic
effects, but it is believed to be substantial in some semicon-
ductors. More than ten years ago, Datta and Das theoretically
analyzed the possibility of a spin transistor that worked due
to the Rashba SO interaction that induced spin precessions in
a semiconductor8 with ferromagnetic leads. More recently,
Murakami et al.4 and Sinovaet al.5 theoretically predicted
that a substantial amount of dissipationless quantum spin
current could be generated by a co-action of electric field and
SO interaction.4–6 Shenet al. found a resonant-spin Hall con-
ductance in a two-dimensionals2Dd system with Rashba SO
interaction under a perpendicular magnetic field.7 There are
also many other works on related issues where SO interac-
tion plays a central role,13–18 and this research direction is
expanding by a very rapid pace due to its possible applica-
tion to spintronics.

A semiconductor spintronic device is likely to be based on
mesoscopic systems and nanostructures where electron-
electronse-ed interactions may be strong. Hence it is desir-

able to formulate a general quantum transport theory which
can handle SO,e-e, and other interactions for systems in the
metal-QD-metal configuration. Here the “QD” indicates a
quantum dot or the device-scattering region where the vari-
ous interactions exist, while “metal” is the device lead which
extends to electron reservoirs far away. The metal leads may
or may not be ferromagnetic, but they are weakly coupled to
the QD region. In almost all previous theoretical work, the
SO interactions are represented by a real-space Hamiltonian
in which e-e interactions and strong correlations are usually
neglected. Indeed, it is rather difficult, if not impossible, to
handle SO together withe-e correlations and other interac-
tions in real space for transport problems. In contrast, the
most powerful and general theoretical technique for quantum
transport in mesoscopic and nanoscopic systems is the
Keldysh nonequilibrium Green’s function sNEGFd
formalism.19 NEGF can handle many-body correlations and
interactions in a unified fashion, and it is a well-established
formalism.19 NEGF is typically formulated in momentum
space or other spectral space for theoretical and numerical
analysis. This means that all interactions need to be formu-
lated in the spectral space. In other words, in order to con-
veniently apply NEGF theory, one needs to write the SO
interactions in a spectral space with second quantization. To
the best of our knowledge, we are not aware of a derivation
of such a second quantized form for SO interaction.

It is the purpose of this paper to report a general quantum
transport theory for metal-QD-metal devices with SO ande
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-e interactions, based on the NEGF framework. We begin by
presenting a pedagogical discussion of the general physics of
SO interaction by quantizing the correspondingclassicalac-
tion, which gives a vivid physical picture of SO interaction.
We then second quantize the real-space SO interaction
Hamiltonian in a proper spectral space, so that it can be
analyzed by NEGF for the quantum-transport properties of
metal-QD-metal devices. Although the derivations are gen-
eral, we specialize on a metal-QD-metal device where the
QD is described by the Anderson model plus the Rashba SO
interaction, and the leads are ferromagnetic metal. The sec-
ond quantized Hamiltonian can then be analyzed within
NEGF and well-established many-body theoretical
methods.20–23To illustrate our formalism, we investigate the
quantum-transport properties of a Aharnov-Bohm ring,
where a QD having Rashba SO ande-e interactions sits in
one arm of the ring. We found that a substantial spin-
polarized conductance or current emerges in this device
when a magnetic flux passes through the ring. In particular,
its spin-polarized direction and strength are controllable by
both the magnetic flux and a gate voltage, hence the predic-
tions are testable experimentally.

The paper is organized as follows. In the Sec. II we dis-
cuss the many-body Hamiltonian of a general metal-QD-
metal device structure and present a pedagogical discussion
of the SO interactions in real space. We then proceed, in Sec.
III, to second quantize the Rashba SO interaction in spectral
space, so that the entire device Hamiltonian can be second
quantized. This process is divided into several subsections,
and careful derivations and discussions are presented. A brief
summary of the second-quantized Hamiltonian in spectral
space is given in Sec. III F. In Sec. IV, we analyze the
quantum-transport properties of a modifiedAB ring which
contains a QD in one arm of the ring, and both Rashba SO
ande-e interactions exist in the QD. Finally, Sec. V summa-
rizes the results of our work.

II. HAMILTONIAN OF THE METAL-QD-METAL DEVICE

In this section we discuss the Hamiltonian of a general
device structure in the metal-QD-metal device configuration.
By presenting a very useful pedagogical discussion on the
classical forces acting on moving charges and spins inside
electrical and magnetic fields, we realize that the SO inter-
action originates from the forcestorqued of the electrical field
on the moving spin. This allows us to write the Hamiltonian
for the SO interaction in real spaceHsosr d and in particular
we derive the Rashba SO interaction. Of course, the derived
Hsosr d is the same as that from the Dirac equation but the
pedagogical discussion gives a vivid physical picture of the
SO interactions for quantum transport in solid-state devices.
In fact, in the literature of relativistic quantum mechanics,
such as the book of Bjorken and Drell,24 SO interaction has
been discussed with the point of view of quantizing the clas-
sical force acting on the moving spin by the external electric
field. We found such a pedagogical discussion in the context
of solid-state electronics to be very useful.

The general device structure we consider is schematically
shown in Fig. 1sad, where the scattering regionsQDd is con-

nected to the outside world by coupling to two ferromagnetic
metal sFMd leads. The permanent magnetic moments of the
leads are denoted by the vectorsM b whereb=L ,R indicates
the left and right leads. The QD is assumed to be weakly
coupled to the leads due to the potential barriers at the two
metal-QD junctionsfFig. 1sbdg. Inside the QD there are SO
ande-e interactions, while these interactions are neglected in
the leads. There may also be an external magnetic fieldBsr d.
For this device, the total many-body Hamiltonian can be
written as

Hsr 1,r 2,…,r Nd = o
i

Hssr id + o
i,jsiÞ jd

HIsr i,r jd, s1d

where the second term is thee-e interactionHIsr 1,r 2d and
the first term is from the single-particle HamiltonianHssr d,

HIsr 1,r 2d =
e2

2ur 1 − r 2u2
, s2d

Hssr d =
p2

2m* + Vsr d + ŝ · Msr d + ŝ · Bsr d + Hsosr d. s3d

Hs contains the usual single-particle terms: the kinetic and
potential energies, the interaction energy with the magnetic
moment M in the ferromagnetic leads, and the Zeeman
energy.25 The last term in Eq.s3d is the SO interactionHso.
Although the real-space form ofHso is known26,27 from the
Dirac equation, in the following we present a pedagogical
discussion about it.

Transport in our device is about the motion of two
entities—charge and spin, in two fields—electric and mag-
netic fields. Therefore there are a total of four actions due to
the fields on the charge and spin:sid the electric or Coulomb
force on the charge;sii d the Lorentz force on the moving
charge;siii d the magnetic force on the spinsZeemand; and
sivd the electric force on the moving spin. Of these four
actions, sid—siii d are well-known and familiar, butsivd is
much less so. Where doessivd come from? It comes due to a
purely relativistic effect.28 Consider a spin which produces a
magnetic field in the space surrounding it; if this spin is
moving, by a relativistic transform we obtain an electric field
sin addition to the magnetic fieldd. In other words, a moving
spin produces an electric field. Conversely, if a spin is mov-

FIG. 1. sColor onlined sad Schematic diagram for a metal-QD-
metal device configuration where the QD is weakly coupled to two
ferromagnetic leads.sbd Schematic diagram for the scattering po-
tential along thex direction. The Rashba SO interaction is assumed
to exist only in the central QD region, i.e.,a=0 for regions with
x,xL andx.xR.
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ing inside anexternalelectric field, it will be subjected to an
action storqued. In this sense,sivd is the counterpart of the
Lorentz force. It has been shown that a moving spin with
velocity v inside an electric fieldE is subjected to a torque
action with an interactive potential energy,28,29

e"

4mec
2s•sv 3 Ed, s4d

whereme is the electron mass,c is the speed of light, and the
electron spin iss=s" /2ds. Of course, this is a classical ex-
pression.

To quantize the classical torque energys4d, we make the
following replacements: electric fieldE→ =Vsr d /e where
Vsr d is the potential energy of the system, and the speedv
→p /me wherep is the momentum operator. The quantum-
mechanical correspondence of expressions4d becomes

"

8me
2c2„ŝ•fp 3 = Vsr dg − ŝ•f=Vsr d 3 pg… =

"

8me
2c2„ŝ•fp

3 = Vsr dg + = Vsr d•sŝ 3 pd…, s5d

where ŝ=sŝx,ŝy,ŝzd is the vector of the Pauli matrix. Ex-
pressions5d is exactly the general form of the SO interaction
Hamiltonian, usually derived from the Dirac equation in the
low-speed limits.24 Therefore, the essence of the SO interac-
tion is simply the action of an external electric field on a
moving spin.

If the potentialVsr d has spherical symmetry, i.e.,Vsr d
=Vsrd, we have=Vsr d=sr / rdsd/drdVsrd. Then the general
spin-orbit interaction of Eq.s5d reduces to the following fa-
miliar form:

Hso= −
1

2me
2c2

1

r

d

dr
Vsrdŝ · l̂, s6d

where the orbital angular momentum operator isl̂ =r 3p. In
fact, Eq.s6d is the well-known Thomas SO coupling.

When our device is made of a two-dimensional electron
gass2DEGd in which the electrons are strongly confined in
the y direction by a confining potentialVsyd, such that
dV/dy@ sdV/dxd ,sdV/dzd, then =Vsr d< ŷsdV/dyd, and the
electric field is almost along they direction. Furthermore, if
Vsyd is asymmetric with respect to the reflection pointy=0,
then the matrix elementkCsydusd/dydVsyduCsydlÞ0 where
Csyd are the basic bound states in they direction. Under
these conditions, the general SO interaction Eq.s5d reduces
to the Rashba SO interaction form,26,27

Hso=
ŷ

2"
· fasŝ 3 pd + sŝ 3 pdag, s7d

where a,kCsydusd/dydVsyduCsydl is the interaction
coefficient.30 Note that an asymmetrical confining potential
in the direction perpendicular to the 2DEGsthe ŷ directiond
is necessary, otherwisea=0, and there would be no Rashba
SO interaction. It is worth mentioning that the Rashba SO
interaction strengtha can be tuned in an experiment by an
external electric field or gate voltage, which has already been
done in some recent experiments.31–34Finally, if we consider

other forms of the potential energyVsr d, we obtain other
kinds of SO interactions, but the essence of the SO coupling
is the interaction of the external electric field on the moving
spins.

III. SECOND QUANTIZATION OF THE DEVICE
HAMILTONIAN

In this section we second quantize the device Hamiltonian
s1d. The focus is to derive the second quantization of the
Rashba SO interaction in a spectral form.

A. Without SO interaction

The second-quantized form for the Hamiltonians1d of the
metal-QD-metal device with nonmagnetic leadssM =0d, in
zero magnetic fieldsB=0d, and without SO interactionsa
=0d can be approximately written in the standard Anderson
model,

H = HQD + o
b=L,R

Hb + HT s8d

whereHQD is the Hamiltonian for the QD region;Hb is for
the leads andHT is the coupling between the leads and the
QD,

HQD = o
n,s

endns
† dns+ o

ns,ms8snsÞms8d

Uns,ns8n̂nsn̂ms8, s9d

Hb = o
k,s

ekbakbs
† akbs, s10d

HT = o
kb,n,s

ftkbnakbs
† dns+ H . c .g. s11d

The quantityn̂ns;dns
† dns; s= ↑ ,↓ sor + and −d is the spin

index, which also describes the spin states, withusl=s1,0dT

ands0,1dT for the spin-up and spin-down states, respectively.
n is quantum number for the eigenstates of the single-particle
Hamiltonian Hs fEq. s3dg in the isolated QD region with
eigenenergyen=knuHsunl. kb is the quantum index for leadb
with eigenenergyekb=kkbuHsukblsb=L ,Rd. tkb,n=kkbuHsunl
describes the coupling strength between the leads and the
QD region. QuantityUns,ns8=kns,ms8ue2/2ur 1−r 2u2ums8 ,nsl
is the matrix element for the two-bodye-e interaction. Here
the e-e interaction in the leads region has been neglected.
Note that whenM =B=a=0, Hs does not depend on the
Pauli matrixŝ; thereforefŝ ,Hsg=0 anden,ekb, andtkb,n are
all independent of the spin indexs.

Ferromagnetic leadsM bÞ0 andHs of Eq. s3d contain a
term ŝ ·Mb. Let us assume thatM b has a constant value in
each leadb althoughM LÞM R in general. By calculating the
matrix elementskkbsuŝ ·Mbuk8bs8l=dkk8sŝ ·Mbdss8, the sec-
ond quantization for this term can be easily obtained.Hb

becomes

Hb = o
k,s

ekbakbs
† akbs + o

k

sakb↑
† ,akb↓

† dŝ · MbSakb↑
akb↓

D .

Due to the existence ofŝ ·Mb, the stateukbsl is usually not
an eigenstate of isolated leadb, andkakbs

† akbsl is not equal to
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the Fermi distribution functionfbsekbd, even in equilibrium.
In order to conveniently solve the transport problem, we di-
agonalizeHb above by a rotational unitary transformation.
This is accomplished by setting

Sakb↑8
akb↓8

D = S cos
ub

2 eifb/2 sin
ub

2 e−ifb/2

− sin
ub

2 eifb/2 cos
ub

2 e−ifb/2DSakb↑
akb↓

D ,

whereub and fb are the directional angles of the FM mo-
ment M b. Under this rotational transformation, the total
second-quantized Hamiltonian of the metal-QD-metal device
becomes

HQD = o
n,s

endns
† dns+ o

ns,ms8snsÞms8d

Uns,ms8n̂nsn̂ms8,

Hb = o
k,s

sekb + sMbdakbs
† akbs,

HT = o
kb,n,s

FtkbnScos
ub

2
akbs

† − ssin
ub

2
akbs̄

† D
3 eisfb/2dns+ H . c.G , s12d

where Mb= uM bu. This form of the Hamiltonian has been
used before,35 but two important comments need to be made:
sid In Hamiltonians12d, the statesukbsl are eigenstates ofHb

for isolated leads; hence in equilibriumkakbs
† akbsl= fbsekbsd

with ekbs;ekb+sMb. sii d After the rotational transformation,
the spin-up direction in the left FM lead, the QD, and the
right FM lead are all different, although they are all aligned
in their localẑ directions. These local coordinate systems are
shown in Fig. 2. In the QD, the spin-up direction is still in
the original ẑ axis, but in the left and right FM leads, the
spin-up directionsi.e., the localẑ directiond is aligned with
the FM momentM L/R ssee Fig. 2d. Although this difference
in spin-up alignment is not important when the QD bridging
the leads has only a single connectionssuch as in Fig. 1d, it
is important if the QD region has double or more connec-
tions ssuch as in Fig. 5d.

B. Rashba SO interaction (I)

In this section and Sec. III C, we second quantize the
Rashba SO interaction, which is a major component of this
paper. The Rashba SO interactions7d can be split into two
terms,

ŷ

2"
· fasxdsŝ 3 pd + sŝ 3 pdasxdg =

1

2"
fasxdŝzpx

+ ŝzpxasxdg −
asxdŝxpz

"
; HR1 + HR2. s13d

For transport direction along thex̂ axis as shown in Fig. 1,
these two terms have some essential differences. The first
term HR1 gives rise to a spin precession,8 while the second
term HR2 does not. In particular,HR1 includes ad-function
factor at the metal-QD contactssx=xL/R, see Fig. 1d.36,37 For
this reason it cannot be second quantized by simply calculat-
ing the matrix elementknsuHR1ums8l. To overcome this diffi-
culty, one has to choose a new basis set in the QD. This will
be accomplished in this section and theHR2 term will be
studied in Sec. III C.

For clarity, the real-space single-particle Hamiltonian con-
sidered in this subsection is

Hs
1sr d ;

px
2 + pz

2

2m* + Vsr d + ŝ · Msr d + HR1. s14d

This is just Eq.s3d, but with only theHR1 part of the SO
interactions. We make a unitary transformation with the fol-
lowing unitary matrix:

usxd =5
1 x , xL

expH− iŝzE
xL

x

kRsxddxJ xL , x , xR

expH− iŝzE
xL

xR

kRsxddxJ xR , x, 6 s15d

wherekRsxd;asxdm* /"2. Here asxd is permitted to have a
dependence on the spatial coordinatex inside the QD, and it
is zero outsidesxR,x or x,xL, see Fig. 1d. Under this uni-
tary transformation, the original basis functions in the QD
region, un↑ l=wnsr ds1,0dT and un↓ l=wn

*sr ds0,1dT, are trans-
formed to

un↑l8 = usxdun↑l = e−iexL

x kRsxddxwnsr dS1

0
D , s16d

un↓l8 = usxdun↓l = e+iexL

x kRsxddxwn
*sr dS0

1
D . s17d

These new basis functions are used to second quantizes14d.
After the unitary transformation,Hs

1 of Eq. s14d becomes

Hs
18 = usxd†Hs

1usxd =
px

2 + pz
2

2m* + Vsr d −
"2kR

2sxd
2m* + s · M8sr d,

s18d

whereM L8=M L anduM R8 u= uM Ru, but the directional angles of
M R8 are changed tosuR,fR−2fsod with fso;exL

xRkRsxddx.
The essence of the above unitary transformation is the

following.
sid It is equivalent to choosing a space-dependent spin

coordinate, as shown in Fig. 3sad, in which the spin-ẑ direc-

FIG. 2. sColor onlined Schematic diagram for the spin coordi-
nates, i.e., the spin-up direction in the left lead, the center region,
and the right lead, respectively.
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tion is fixed everywhere, but the spin-x̂ and spin-ŷ directions
are dependent on the space positionr. In different positions
along thex axis, the directions of the spin-x̂ , ŷ axis are ro-
tated. In other words, the unitary transform changes us to a
rotating frame. It is well known that for an electron moving
along thex direction, the Rashba termHR1 gives rise to a
spin precession.8,16 That is, the spin component in thex-y
plane will rotate as the electron moves along thex̂ direction,
therefore the electron spin is usually not invariant. However,
in the rotating frame which follows the spin precession, the
spin is invariant; hencefHs

18 ,ŝx/y/zg=0 is satisfied in the QD
region.

sii d The Rashba interactionHR1 can cause an energy split
between spin-up and spin-down states for nonzerokx, as
shown by the energy dispersion in the left panel of Fig.
3sbd.21,38 The above unitary transformation recovers the
alignment of the two dispersion curves, so that the right
panel of Fig. 3sbd is obtained. Therefore, after the unitary
transformation, the new HamiltonHs

18 appears to be com-
pletely the same as the Hamiltonian without the Rashba in-
teractionHR1, except a rotation of the magnetic momentM R
and a potential energy difference, −f"2kR

2sxd /2m*g=
−m*a2sxd / s2"2d, which is a simple constant ifasxd is inde-
pendent ofx. Using the same method as that used in Sec.
III A, the second quantization of Eq.s18d is easily obtained,

H = HQD + o
b=L,R

Hb + HT,

HQD = o
n,s

endns
† dns,

Hb = o
k,s

sekb + sMbdakbs
† akbs. s19d

HT = o
k,n,s

FtkLnScos
uL

2
akLs

† − ssin
uL

2
akLs̄

† DeisfL/2dns

+ tkRnScos
uR

2
akRs

† − ssin
uR

2
akRs̄

† DeisfR/2e−isfsodns

+ H . c.G . s20d

This is one of the main results of this paper. The Rashba
interactionHR1 gives rise to an extra spin-dependent phase
factor −sfso in s20d: it is −fso for s=↑ and +fso for s=↓.
Note that the term with this phase factor satisfies the time-
reversal invariance whileM b=0, i.e., fT,HTg=0 whereT
is the time-reversal operator.39 This is an expected prop-
erty because the Rashba SO interaction in real spacefEq.
s7dg does satisfy the time-reversal invariancessee the Ap-
pendix d. We emphasize that the phase factor −sfso in Eq.
s20d is fundamentally different from the phase factor
caused by magnetic flux in systems such as theAB ring;
the latter is independent of spins, and it destroys time-
reversal symmetry.

For the special case wherekRsxd=kR=const, i.e., indepen-
dent of coordinatex of the scattering region, we havefso
=kR3 sxR−xLd. Then, redefininge−iskRxLdns→dns, the Hamil-
tonian s20d can be rewritten in a symmetric manner,

HQD = o
n,s

endns
† dns,

Hb = o
k,s

sekb + sMbdakbs
† akbs,

HT = o
k,n,s,b

FtkbnScos
ub

2
akbs

† − ssin
ub

2
akbs̄

† D
3 eisfb/2e−iskRxbdns+ H . c.G . s21d

C. Rashba SO interaction (II)

Now we second quantize the second term of the Rashba
interaction fEq. s13dg, HR2;−fasxdŝxpz/"g, which can be
accomplished by calculating the matrix elements
kms8uusxd†HR2usxdunsl=kms8uHR28 unsl. If s8=s, this matrix el-
ement is exactly zero. Hence we only need to calculate the
nondiagonal matrix elements, and they are

km↓uHR28 un↑l =
− "kR

m* E dr e−2ikRxwmsr dpzwnsr d ; tmn
so ,

s22d

kn↓uHR28 um↑l =
− "kR

m* E dre−2ikRxwnsr dpzwmsr d

=
"kR

m* E dre−2ikRxwmsr dpzwnsr d = − tmn
so ,

s23d

kn↑uHR28 um↓l = tmn
so*, s24d

km↑uHR28 un↓l = − tmn
so*. s25d

Heresas well as belowd we have assumedkRsxd for asxdg
to be independent ofx, but even ifkRsxd depends onx, all
results are completely the same. With the above matrix ele-

FIG. 3. sColor onlined sad Schematic diagram for the spin-
coordinate axis in different positions. Here thex andy spin direc-
tions are rotated along thex axis in space.sbd Schematic diagram
for the dispersion relation before and after the unitary
transformation.
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mentsfs22d–s25dg, the second quantized form ofHR2 is

HR2 = o
m,nsm,nd

tmn
so fdm↓

† dn↑ − dn↓
† dm↑g + H . c . ,

which can be written in the more compact form,

HR2 = o
m,n

tmn
so dm↓

† dn↑ + H . c . , s26d

where it is important to realize thattmn
so =−tnm

so . Equations26d
is another main result of this paper.

Some general characteristics of Eq.s26d are, in order.
sid The propertytmn

so =−tnm
so for the matrix elements origi-

nates from the time-reversal invariance of the original real-
space Rashba Hamiltonian.39 Using this property, we can ex-
actly prove that the second-quantized form ofHR2fEq.
s26dgindeed satisfies the time-reversal invariance.39

sii d If n=m, we havetnn
so=−tnn

so; hence tnn
so must vanish.

This means that the Rashba SO interaction cannot induce any
intralevel spin flip, i.e., it cannot give rise to a transition
sn↑ d→ sn↓ d in which the level indexn is the same. There-
fore, the SO interactions26d is fundamentally different from
that of an external magnetic field. A magnetic field can cause
intralevel spin flip, provide a Zeeman energy that relieves
spin degeneracy, and induce spin polarization in an isolated
QD ssee Sec. III E, belowd.

siii d The Rashba SO interactions26d can cause spin flips
between different energy levels. This interlevel spin-flip cou-
pling is similar to the intersubband mixing in real space,
which has been studied in previous works.13 Despite the in-
terlevel spin flips, the system is still at least twofold degen-
erate for any eigenstates, becausetmn

so =−tnm
so . This guarantees

that at equilibrium an isolated QD has no spin polarization.
In the Appendix , the general properties of Eq.s26d are fur-
ther discussed.

sivd In fact, because all spin-orbit couplings satisfy time-
reversal invariance, the above properties and matrix elements
tmn=−tnm must hold true in general. In this regard, we note
that there exist papers wheretmn= tnm and intralevel spin flips
are allowed; these effects cannot come from SO interactions,
as sometimes claimed.

Let us estimate the value oftnm
so . Consider a square QD

with linear size W. The eigenstates arewnsr d
=s2/Wd sin snxpx/Wd sin snzpz/Wd, hencetmn

so can be easily
calculated from Eq.s22d. For parametersW=100 nm,a=3
310−11 eV m andm* =0.036me, the intradot level spacing
De<"2p2/2m*W2<1 meV. This is to be compared with a
rough estimate ofutmn

so u,"2kR/m*W=a /W,0.3 meV.

D. Electron-electron Coulomb interaction

In order to second quantize the Rashba SO interaction, we
have introduced a unitary transformation defined by Eq.s15d.
Does this transformation affect the familiar second-quantized
form of thee-e interaction? Here we show it does not.

Starting from the two-bodye-e interaction in real space,

HIsr 1,r 2,…r Nd = o
i,jsiÞ jd

e2

2ur i − r ju2
,

we apply the unitary transformation, and the new Hamil-
tonianHI8 is

HI8 = o
i,jsiÞ jd

u†sxidu†sxjd
e2

2ur i − r ju2
usxjdusxid = o

i,jsiÞ jd

e2

2ur i − r ju2
.

This meansHI8=HI, and the unitary transformation does not
affect the form of thee-e interaction. We therefore can di-
rectly write the second-quantizede-e interaction in its famil-
iar form,

HI = o
ns,ms8snsÞms8d

Uns,ms8dns
† dnsdms8

† dms8, s27d

where the matrix elementUns,ms8 is

Uns,ms8 =Kns,ms8U e2

2ur 1 − r 2u2
Ums8,nsL .

E. External magnetic field

The unitary transformationsfEq. s15dg do affect the
second-quantized form of the external magnetic fieldsŝ•B.
Consider an arbitrary external magnetic fieldB=sBx,By,Bzd,
whereBx/y/z is projected in thex/y/z direction.

First, we investigate thez-direction elementBz. Under the
unitary transformationfEq. s15dg, the termŝzBz changes to

u†sxdŝzBzusxd = eiŝzkRxŝzBze
−iŝzkRx = ŝzBz,

which meansŝzBz does not change under the unitary trans-
formation. Therefore its second-quantized form is still

o
ns

sBzdns
† dns. s28d

Second, we investigate thex-direction elementBx, i.e., the
term ŝxBx in the Hamiltonian. After the unitary transforma-
tion fEq. s15dg, u†sxdsŝxBxdusxdÞ ŝxBx, so that it is affected
by the transformation. The matrix elements
kms8uu†sxdŝxBxusxdunsl are found to be

km↑uu†ŝxBxuun↑l = km↓uu†ŝxBxuun↓l = 0, s29d

km↓uu†ŝxBxuun↑l =E dre−i2kRxwmsr dwnsr dBx ; tmn
B Bx,

s30d

kn↓uu†ŝxBxuum↑l = tmn
B Bx, s31d

kn↑uu†ŝxBxuum↓l = km↑uu†ŝxBxuun↓l = tmn
B* Bx. s32d

Hence, the second-quantized form ofŝxBx is

o
m,nsn,md

Bxtmn
B fdm↓

† dn↑ + dn↓
† dm↑g + o

n

Bxtnn
B dn↓

† dn↑ + H . c . ,

or it can be written in a more compact form,
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o
m,n

Bxtmn
B dm↓

† dn↑ + H . c . , s33d

with tmn
B = tnm

B . Note that the form of Eq.s33d is very similar
to the Rashba termHR2, fEq. s26dg, but there exists an essen-
tial difference. Namely, for the magnetic field in thex direc-
tion, tmn

B = tnm
B in Eq. s33d, while for the Rashba term,tmn

so =
−tnm

so in Eq. s26d. We emphasize that this is an essential dif-
ference because of two reasons:

sid The magnetic-field term destroys the time-reversal in-
variance, it provides a Zeeman energy that breaks the spin
degeneracy of the energy levels, and it can induce a spin
polarization in equilibrium. In contrast, the Rashba termHR2
satisfies the time-reversal invariance and maintains the two
degeneracies.

sii d Whenn=m,tnn
B can be nonzero so that intralevel spin

flips are possible. Furthermore, thetnn
B term is usually the

largest term in the sum of Eq.s33d, e.g., tmn
B =dmn at kR=0.

But for the Rashba interactions26d, tnn
so must vanish as dis-

cussed before, so that it cannot cause intralevel spin flip. We
therefore comment that interactions of the following form,
swhich have been used in some previous literatured:

td↓
†d↑ + td↑

†d↓

do not represent the SO interaction. Rather, they describe a
magnetic field pointing to thex direction.

In order to estimate the value oftnm
B , we consider a rect-

angular QD with lengthL and widthW. tmn
B can be obtained

as

tmn
B = 2dmz,nzE

0

1

dxe−2ikRLx sinmxpx sinnxpx.

Figure 4 plots the numerical results fortm1
B versus the

parameterkRL that is obtained this way. AskRL increases,
more tm1

B are in action. If the parametersa=2p10−11 eV m
and L=100 nm, we havekRL<1 for m* =0.036me. For this
kRL value, onlyt11

B and t21
B are significant.

Finally, the second quantization of theBy term is com-
pletely the same as that for thex direction; hence, its second-
quantized form is the same as Eq.s33d.

F. Brief summary

Collecting all the pieces of second quantization which we
have carried out in this section, for a device in the form of

metal-QD-metal, where there exists Rashba SO ande-e in-
teractions in the QD, the metal leads are magnetic material,
and there exists an external magnetic fieldB. Hamiltonian
s1d becomes

H = HQD + o
b=L,R

Hb + HT, s34d

where

HQD = o
n,s

sen + sBzddns
† dns+ o

ns,ms8snsÞms8d

Uns,ms8n̂nsn̂ms8

+ o
m,n

ftmn
so dm↓

† dn↑ + Bxtmn
B dm↓

† dn↑ + H . c .g, s35d

Hb = o
k,s

sekb + sMbdakbs
† akbs, s36d

HT = o
k,n,s,b

FtkbnScos
ub

2
akbs

† − ssin
ub

2
akbs̄

† D
3 eisfb/2e−iskRxbdns+ H . c.G , s37d

wheretmn
so =−tnm

so andtmn
B = tnm

B . This Hamiltonian is the central
result of this paper. The Rashba SO interaction causes two
effects:sid It gives rise to an extra phase factor −skRxb in the
hopping matrix element between the leads and the QD. Note
that this phase factor is dependent on the electronic spins,
and it is essentially different from the usual phase factor due
to a magnetic flux which is independent ofs. sii d The Rashba
SO interaction causes an interlevel spin-flip term with the
strengthtmn

so , and it cannot cause intralevel spin flips. The
time-reversal invariance is maintained by the SO interaction,
which is essentially different from the effect of an external
magnetic field.

IV. EXAMPLE: TRANSPORT PROPERTIES OF AN AB
RING WITH RASHBA SO INTERACTION

As an example of applying the second quantized Hamil-
tonian Eqs.s34d–s37d, we now investigate the quantum-
transport properties of a modifiedAB ring sshown in Fig. 5d.
A QD sits on one arm of the ring and a Rashba SO interac-
tion exists inside the QD. No Rashba interaction exists on the
other arm of the ring. The ring is connected to the outside
world by two normal metal leads.AB rings with an embed-
ded QD have been studied in many previous works.40–43

Some interesting phenomena, such as, for example, Fano

FIG. 4. sColor onlined The spin-flip coupling strengthtm1
B versus

the Rashba SO interactionkRL. As kRL increases, more modessmd
are playing a role.

FIG. 5. Schematic diagram for the modifiedAB ring device.
Two normal leads are coupled to the center ring, a magnetic flux
threads the ring, and a QD is embedded in one arm of the ring.
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resonance,41–43 have been discovered in such a device. The
effect of the Rashba interaction has not been studied so far,
and we have found that it leads to interesting transport be-
havior. In particular, a substantial spin-polarized current or
conductance is induced by a combined effect of the Rashba
SO interaction and a magnetic fluxf threading through the
AB ring. The direction of the spin polarization and its
strength are easily controllable byf or by a gate voltage.

The Hamiltonian of ourAB ring sFig. 5d can be written
using various pieces of the general HamiltonianfEqs.
s34d–s37dg,

H = o
k,s,bsb=L,Rd

ebkabks
† abks+ o

s

edds
†ds + Ud↑

†d↑d↓
†d↓

+ o
k,s

tLRfaLks
† aRks+ aRks

† aLksg + o
k,s

ftLdaLks
† ds

+ tRde
−iskRLeifaRks

† dsg + H . c. s38d

As discussed previously, the physical meaning of each term
is clear. The first term describes the normal metal leads; the
second term is for the QD which has a single energy level
with spin-indexs; the third term is the intradote-e Coulomb
interaction with a constant strengthU; the fourth term is for
the arm of the ring without the QD; and the fifth term is the
coupling between the leads and the QD. Due to the Rashba
SO interaction, according to Eq.s37d there is a spin-
dependent phase factor −skRL in the hopping matrix element
tRd on the fifth term. Since we only consider one level in the
QD, the interlevel spin-flip term of Eq.s35d does not appear
here. This is equivalent to neglecting the intersubband mix-
ing as in some previous works.8 We emphasize that both the
e-e Coulomb interaction and the Rashba SO interaction are
considered, which is different from previous studies of the
Rashba SO interaction wheree-e interaction was neglected.
Indeed, our second-quantized Hamiltonian in the spectral
spacefEqs.s34d–s37dg allows us to consider both effects to-
gether. Finally, the magnetic fluxF threading theAB ring
gives rise to a familiar spin-independent phase factorf
=2pF /F0 in the matrix elementtRd.

The quantum-transport problem described by Hamiltonian
s38d can be solved by standard many-body techniques. In the
following we calculate the charge current using the standard
Keldysh nonequilibrium Green’s function method. Following
Ref. 23, the charge current flowing from the left lead into the
AB ring, contributed by spin-up or spin-down electrons, can
be derived as

Is =
2e

"
E dv

2p
ReftLdGdLs

, svd + tLRGRLs
, svdg, s39d

where the Keldysh Green’s functionG,svd is the Fourier
transform ofG,std, and its definition is

Gbb8s
, std ; iKo

k8

ak8b8s
† s0do

k

akbsstdL ,

Gbds
, std ; iKds

†s0do
k

akbsstdL ,

Gdds
, std ; ikds

†s0ddsstdl. s40d

To solveG,, we first calculate the retarded Green func-
tions Gs

r using the Dyson equation,

Gs
r = gs

r + gs
rSs

rGs
r , s41d

and the Green’s functionGs
r is a 333 matrix defined as

Gs
r ; 1GLLs

r GLRs
r GLds

r

GRLs
r GRRs

r GRds
r

GdLs
r GdRs

r Gdds
r 2 . s42d

In Eq. s41d, gs
r is the Green’s function of the system without

coupling between the leads and the QDsi.e., whentLR= tLd
= tRd=0d. It can be obtained exactly as

gs
rsvd ; 1− ipr 0 0

0 − ipr 0

0 0 gdds
r svd

2 , s43d

wheregdds
r svd=sv−ed−U+Uns̄d / fsv−eddsv−ed−Udg andns̄

is the intradot electron occupation number at states̄. r in Eq.
s43d is the density of state of the leads. The self-energySs

rsvd
in Eq. s41d is44

Ss
rsvd ; 1 0 tLR tLd

tLR
* 0 t̃Rds

tLd
* t̃Rds

* 0
2 , s44d

where t̃Rds= tRde
−iskRLeif. Using Eqs.s43d and s44d, Gs

r can
easily be obtained by solving Dyson’s Eq.s41d as Gs

r

=sgs
r−1−Ss

rd−1.
After solvingGs

rsvd, the Keldysh Green’s functionGs
,svd

can be obtained straightforwardly from the standard Keldysh
equation,

Gs
, = s1 + Gs

rSs
rdgs

,s1 + Ss
aGs

ad + Gs
rSs

,Gs
a

= Gs
rgs

r−1gs
,gs

a−1Gs
a + Gs

rSs
,Gs

a. s45d

For our present case,Ss
,=0 andgs

r−1gs
,gs

a−1 is diagonal, with
gbbs

r−1gbbs
, gbbs

a−1=2i f bsvd /prsb=L ,Rd and gdds
r−1gdds

, gdds
a−1=0,

where fbsvd=1/fesv−mbd/kBT+1g is the Fermi distribution
function in leadb. As the last step, the intradot electron
occupation numberns needs to be solved self-consistently
with the self-consistent equationns=−i esdv /2pdGdds

, svd.
In the following we present the numerical results. Figure

6 shows the total linear conductanceG=ossdIs/dVd versus
the intradot-level positioned at zero magnetic fluxsf=0d,
but with different Rashba interaction strengthkRL :kRL=0
ssolidd, p /4 sdashedd, p /2 sdottedd, 3p /4 sdashed-dottedd,
and p sdashed-dotted-dottedd. The curves are dominated by
two Coulomb peaks ated=0 anded=−U. When there is no
Rashba SO interactionsi.e., kRL=0, solid curved, these two
peaks show a typical Fano resonance shape due to the inter-
ference of electrons passing the two arms of theAB ring, in
agreement with previous theoretical and experimental
studies.40,41 It is interesting to discover that this Fano reso-
nance can be strongly affected by the Rashba SO interaction.
While increasing the Rashba parameterkRL from 0, the Fano
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resonance is decreased, and it can completely disappear at
kRL=p /2 sdotted curved. While further increasingkRL, the
Fano resonance rises up again, but with an opposite Fano
factor, for example, atkRL=p sdashed-dotted-dotted curved.

In order to understand these results, we investigate the
interference term of total transmission probability, which is
approximatively proportional to,os cossDu+skRLd. Here
Du is the phase difference of the transmission amplitude
through the two arms, and it varies from 0 top /2 and finally
to p, as ed is moved from −̀ to 0 and finally to`. This
clearly shows that the total transmission probability is indeed
having a Fano asymmetric-resonance shape whenkRL=0 or
p. On the other hand, it is symmetric atkRL=p /2 or 3p /2.
Hence, the Rashba SO interaction can alter the Fano reso-
nance shape in substantial ways.

Next, in the three panels of Figs. 7 and 8, we plot con-
ductanceGs and spin polarizationh;sG↑−G↓d / sG↑+G↓d
versus magnetic fluxf for three values ofed=1,0,−1, re-
spectively. These values ofed are near the right Coulomb
peak of Fig. 6. In Fig. 7, the thick curves are forG↑, and the
thin curves are forG↓. The solid, dashed, and dotted curves
correspond to different values of the Rashba parameterkRL
=0,p /4, andp /2. Figures 7 and 8 clearly show that if either
one of the two parameterssf and kRLd vanishes, the trans-
port current has no spin polarization, so thath=0 andG↑
=G↓. However, when both parameters are nonzero, a sub-
stantial spin-polarized conductance is found andh can be as
large as 90% for the given set of system parametersfFigs.
8sad and 8scdg.

Importantly, in the present device the directions of spin
polarization and its strengthshd are easily controllable by
varying system parameters, which are experimentally acces-
sible. sid By varying the magnetic fluxf: when f is tuned
from −p /2 to p /2 sor from p /2 to 3p /2d, the polarizationh
strongly varies from a large positive value to a negative
value or vice versa.sii d By varying the intradot leveled using
a gate voltage: whened is moved from one side to another
side of a Coulomb peak, the polarizationh can be tuned
from its largest positive value to its largest negative value or
vice versa. Numerically we found that one only needs to
changeed by a small amount to see the polarization change,

namely, a few half widthsG of the Coulomb peak.sThe
parameters used in Figs. 7 and 8 correspond toG
;2prutbdu2<1d. This means that in an experiment one only

FIG. 6. sColor onlined ConductanceG versus the intradot level
ed for kRL=0 sthe black solid curved, p /4 sthe red dashed curved,
p /2 sthe magenta dotted curved, 3p /4 sthe blue dashed-dotted
curved, andp sthe purple dashed-dotted-dotted curved, respectively.
Other parameters aretRd= tLd=0.4, tLR=0.1, rL=rR=1, kBT
=0.0001,U=5, andf=0.

FIG. 7. sColor onlined ConductanceG↑ andG↓ versus magnetic
flux f for several intradot levels:sad ed=1; sbd ed=0; andscd ed=
−1. The solid, dashed, and dotted curves correspond tokRL
=0,p /4, andp /2, respectively. The thick curves areG↑ and the
thin curves areG↓. The other parameters are the same as those of
Fig. 6.

FIG. 8. sColor onlined Spin polarizationh versus magnetic flux
f for kRL=0 sdashed curved, p /4 ssolid curvesd, andp /2 sdotted
curved, respectively. The other parameters are the same as those of
Fig. 6.
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needs to slightly vary the gate voltage to changeh from 1 to
−1 or vice versa. Furthermore, we note that when polariza-
tion h reaches its largest value, the conductance itself is still
large, e.g.,G↑ or G↓ can exceed over 0.8e2/h fsee Fig. 7sadg.

Finally, we estimate if the parameterkRL can reach a
value of p /2 in the present experimental technology, the
above theoretical predictions can be observed experimen-
tally. Assuming the Rashba SO interaction strengtha,3
310−11 eV m, which is the reported value for some
semiconductors,13,32,33 kR=m*a /"2<0.015/nm for m*

=0.036me. Then, if the length of the QD is the typical value
100 nm,kRL<1.5. Therefore we conclude thatkRL can reach
a value,p /2 or larger experimentally.

V. CONCLUSION

In this paper we have derived a second-quantized Hamil-
tonian in spectral spacefor a general device structure of
metal-QD-metal configuration, including the spin-orbital and
e-e interactions. In other words, we extended the standard
Anderson Hamiltonian to the case in which the central de-
vice region has asRashbad spin-orbital interaction. We dis-
covered that the Rashba SO interaction causes two changes:
sid It gives rise to an extra spin-dependent phase factor
−skRxb in the coupling matrix elements between the leads
and the quantum dot.sii d The Rashba SO interaction causes
an interlevel spin-flip term with strengthtmn

so =−tnm
so , and it

cannot cause any intralevel spin flips.
The spectral form of the Hamiltonian is very important as

it allows the analysis of many complicated quantum-
transport problems involving SO ande-e interactions, by us-
ing the well-established many-body Green’s function theo-
retical techniques such as the Keldysh nonequilibrium
Green’s function formalism. On the other hand, it would be
much more difficult to carry out similar investigations using
a real-space Hamiltonian, especially ife-e interactions are
present.

As an example, we investigated the quantum-transport
properties of aAB ring in which a QD having Rashba SO
and e-e interactions is embedded in one arm of the ring. A
substantial spin-polarized current or conductance emerges in
this device due to the combined effect of a magnetic flux and
the Rashba SO interaction. In particular, the direction of the
spin polarization and the strengthh can be easily controlled
by a number of experimentally accessible parameters.
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APPENDIX

In this Appendix, we collect some general properties of
the spin-orbit coupling. Although these properties should be
well-known,13 we believe it is useful to put them in a form
that is easily accessible. In addition, these properties hold for
all spin-orbit interactions, including the Rashba SO interac-
tion.

sid The SO interaction HamiltonianHso, fEq. s5dg, satis-
fies the time-reversal invariance. In other words,Hso com-
mutes with the time-reversal operatorT=−iŝyK swhereK is
the complex-conjugation operatord. Indeed, using the Hamil-
tonianHso of Eq. s5d, it is easy to provefT,Hsog=0.

sii d When a system has spin-orbit coupling, each eigenen-
ergy level is still at least twofold degenerate, i.e., the so-
called Kramer’s degeneracy exists. Briefly this can be proved
as follows. We start from the HamiltonianH of Eq. s3d but,
settingB=M sr d=0 in s3d, we assumewnsr 1,r 2,…r Nd is an
eigenstate ofH, so that Huwnl=Enuwnl. Since H is time-
reversal invariant sTH=HTd, we have HTuwnl=THuwnl
=EnTuwnl. Hence, stateTuwnl is also an eigenstate with the
same eigenenergyEn as that of the stateuwnl. Furthermore,
one has kwnuTuwnl=swn,Twnd=sT2wn,Twnd=−kwnuTuwnl,
hencekwnuTuwnl=0. This means stateTuwnl is orthogonal to
uwnl. Therefore, although spin is no longer a good quantum
number when the SO interaction exists, the system is still at
least twofold degenerate for any of its eigenstates.

siii d At equilibrium, a spin-orbit coupling cannot induce a
spontaneous spin polarization. We prove this as follows.
Since the system is in equilibrium, the twofold degenerate
eigenstatesuwnl and Tuwnl have the same occupation prob-
ability psEnd. Then, the average of spin polarization in an
arbitrary directionn̂ can be calculated as

kŝn̂l = o
n

psEndfkwnuŝn̂uwnl + kTwnuŝn̂uTwnlg

= o
n

psEndfkwnuŝn̂uwnl + kTwnu − Tŝn̂uwnlg

= o
n

psEndfkwnuŝn̂uwnl − kwnuŝn̂uwnlg = 0.

Therefore, at equilibrium no spin-orbit coupling can induce a
spontaneous spin polarization in any direction.
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