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We report on a general theory for analyzing quantum transport through devices in the metal-QD-metal
configuration where QD is a quantum dot or the device-scattering region which contains Rashba spin-orbital
and electron-electron interactions. The metal leads may or may not be ferromagnetic, and they are assumed to
weakly couple to the QD region. Our theory is formulated by second quantizing the Rashba spin-orbital
interaction in spectral spacmstead of real spageand quantum transport is then analyzed within the Keldysh
nonequilibrium Green’s function formalism. The Rashba interaction causes two main effects to the Hamil-
tonian: (i) it gives rise to an extra spin-dependent phase factor in the coupling matrix elements between the
leads and the QD, and) it gives rise to an interlevel spin-flip term, but forbids any intralevel spin flips. Our
formalism provides a starting point for analyzing many quantum transport issues where spin-orbital effects are
important. As an example, we investigate the transport properties of a Aharnov-Bohm ring in which a QD
having a Rashba spin-orbital and electron-electron interactions is located in one arm of the ring. A substantial
spin-polarized conductance or current emerges in this device due to the combined effect of a magnetic flux and
the Rashba interaction. The direction and strength of the spin polarization are shown to be controllable by both
the magnetic flux and a gate voltage.

DOI: 10.1103/PhysRevB.71.165310 PACS nuni®er73.23-b, 72.25.Dc, 85.75:d, 73.40.Sx

[. INTRODUCTION able to formulate a general quantum transport theory which

The spin-orbit(SO) interaction in semiconductors has at- €1 handle SGe-e, and other interactions for systems in the
tracted great attention in recent yéatdas it plays a very Meta-Qb-metal ﬁonﬂgu_ratmn. Here the QD hlndlcztes a
interesting role in the emerging field of semiconductor spin-duantum dot or the devhqtla-s“catterlin_g rﬁglgn W elreé eh\(arrll-
tronics. SO interaction can couple the spin degree of freedorRUS Interactions exist, while “metal” Is the device lead whic
of an electron to its orbital motion and vice versa, therebyEXe€nds to electron reservoirs far away. The metal leads may
giving a useful handle for manipulating and controlling the Or:em(gé nr(;t ?Oenfirgog?rﬁggfgﬁ’ bruetvtigi)é ?ﬁi;‘;ggtz (\j\?grﬁlegléo
electron spin by external electric fields or gate voltages. Th gion. P '

SO is an intrinsic interaction having its origin in relativistic O interactions are represented by a real-space Hamiltonian

ffects. but it is believed to b betantial | >~ in which e-e interactions and strong correlations are usually
efiects, but 1t1s believed 1o be substantial In SOME SEMICONAa g acted. Indeed, it is rather difficult, if not impossible, to

“Ollqe
ductors. More than ten years ago, Datta and Das theore“‘:""l&andle SO together witk-e correlations and other interac-

analyzed the possibility of a spin transistor that worked dugjons in real space for transport problems. In contrast, the
to the Rashba SO interaction that induced spin precessions jfjost powerful and general theoretical technique for quantum
a semiconduct8rwith ferromagnetic leads. More recently, transport in mesoscopic and nanoscopic systems is the
Murakami et al* and Sinovaet al> theoretically predicted Keldysh nonequilibrium ~ Green's  function (NEGP
that a substantial amount of dissipationless quantum spiformalism® NEGF can handle many-body correlations and
current could be generated by a co-action of electric field an¢hteractions in a unified fashion, and it is a well-established
SO interactiorf~® Shenet al.found a resonant-spin Hall con- formalism!® NEGF is typically formulated in momentum
ductance in a two-dimensioné2D) system with Rashba SO space or other spectral space for theoretical and numerical
interaction under a perpendicular magnetic fielthere are  analysis. This means that all interactions need to be formu-
also many other works on related issues where SO interadated in the spectral space. In other words, in order to con-
tion plays a central rol&-18 and this research direction is veniently apply NEGF theory, one needs to write the SO
expanding by a very rapid pace due to its possible applicainteractions in a spectral space with second quantization. To
tion to spintronics. the best of our knowledge, we are not aware of a derivation
A semiconductor spintronic device is likely to be based onof such a second quantized form for SO interaction.
mesoscopic systems and nanostructures where electron- It is the purpose of this paper to report a general quantum
electron(e-e) interactions may be strong. Hence it is desir-transport theory for metal-QD-metal devices with SO and
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-e interactions, based on the NEGF framework. We begin by (@) X
presenting a pedagogical discussion of the general physics of FM )( FM l—>
SO interaction by quantizing the correspondaigssicalac- z
tion, which gives a vivid physical picture of SO interaction. (b)
We then second quantize the real-space SO interaction
Hamiltonian in a proper spectral space, so that it can be
analyzed by NEGF for the quantum-transport properties of ; i
metal-QD-metal devices. Although the derivations are gen- AL Xg
eral, we specialize on a metal-QD-metal device where the . o
QD is described by the Anderson model plus the Rashba SO FIG. 1. (Color onling (a) Schematic diagram for a metal-QD-
interaction, and the leads are ferromagnetic metal. The se@etal device configuration where the QD is weakly coupled to two
ond quantized Hamiltonian can then be analyzed withif€Tomagnetic leadsb) Schematic diagram for the scattering po-
NEGF and well-established many-body theoreticaltem'a.' along t.he( direction. The Ras.hba.SO |nteractlon is ass.,umed
methods®-23To illustrate our formalism, we investigate the o exist only in the central QD region, i.ex=0 for regions with
quantum-transport properties of a Aharnov-Bohm ring, <~ andx=xg
where a QD having Rashba SO ae@ interactions sits in ) ) ]
one arm of the ring. We found that a substantial spin-n€cted to the outside world by coupling to two ferromagnetic
polarized conductance or current emerges in this devicE'etal(FM) leads. The permanent magnetic moments of the
when a magnetic flux passes through the ring. In particulad€@ds are denoted by the vectdds; where3=L,R indicates
its spin-polarized direction and strength are controllable byhe left and right leads. The QD is assumed to be weakly
tions are testable experimentally. metaI-QD Junct.|on5{F|g.. (b)]. In;lde the_ QD there are SO
The paper is organized as follows. In the Sec. Il we dis-ande-e interactions, while these interactions are n_eg!ected in
cuss the many-body Hamiltonian of a general metal-QDihe leads. There may also be an external magnetic Béigl
metal device structure and present a pedagogical discussié®r this device, the total many-body Hamiltonian can be
of the SO interactions in real space. We then proceed, in Se@ritten as
I, to second quantize the Rashba SO interaction in spectral
space, so that the entire device Hamiltonian can be second Hryra,...ry) :E Hy(ri) + 2 Hi(ri.r), (1)
quantized. This process is divided into several subsections, ' hil#D
and careful derivations and discussions are presented. A brigfhere the second term is tleee interactionH,(r,,r,) and
summary of the second-quantized Hamiltonian in spectrajhe first term is from the single-particle Hamiltonighy(r),
space is given in Sec. lllF. In Sec. IV, we analyze the
quantum-transport properties of a modifié@ ring which

—>

A az0 g

contains a QD in one arm of the ring, and both Rashba SO Hiry,ra) = 2ry—r,%’ (2)
ande-e interactions exist in the QD. Finally, Sec. V summa-
rizes the results of our work. p?

Hy(r) = Py +V(r)+o-M(r)+o-B(r) +Hgfr). (3)

Il. HAMILTONIAN OF THE METAL-QD-METAL DEVICE ] ] ) o
H, contains the usual single-particle terms: the kinetic and

In this section we discuss the Hamiltonian of a generapotential energies, the interaction energy with the magnetic
device structure in the metal-QD-metal device configurationmoment M in the ferromagnetic leads, and the Zeeman
By presenting a very useful pedagogical discussion on thenergy?® The last term in Eq(3) is the SO interactiot,
classical forces acting on moving charges and spins insidgithough the real-space form ¢, is knowrf®27 from the
electrical and magnetic fields, we realize that the SO interDirac equation, in the following we present a pedagogical
action originates from the fordgorque of the electrical field  discussion about it.
on the moving spin. This allows us to write the Hamiltonian  Transport in our device is about the motion of two
for the SO interaction in real spa¢t,(r) and in particular  entities—charge and spin, in two fields—electric and mag-
we derive the Rashba SO interaction. Of course, the derivegdetic fields. Therefore there are a total of four actions due to
Hsd(r) is the same as that from the Dirac equation but thehe fields on the charge and spii: the electric or Coulomb
pedagogical discussion gives a vivid physical picture of theforce on the charge(ii) the Lorentz force on the moving
SO interactions for quantum transport in solid-state devicesharge;(iii) the magnetic force on the spi@eeman; and
In fact, in the literature of relativistic quantum mechanics,(iv) the electric force on the moving spin. Of these four
such as the book of Bjorken and DrétlSO interaction has actions, (i)—(iii) are well-known and familiar, butiv) is
been discussed with the point of view of quantizing the clasmuch less so. Where doés) come from? It comes due to a
sical force acting on the moving spin by the external electriqourely relativistic effect® Consider a spin which produces a
field. We found such a pedagogical discussion in the contextnagnetic field in the space surrounding it; if this spin is
of solid-state electronics to be very useful. moving, by a relativistic transform we obtain an electric field

The general device structure we consider is schematicall{in addition to the magnetic fieldIn other words, a moving
shown in Fig. 1a), where the scattering regiaq@D) is con-  spin produces an electric field. Conversely, if a spin is mov-
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ing inside arexternalelectric field, it will be subjected to an other forms of the potential energy(r), we obtain other
action (torque. In this sense(iv) is the counterpart of the kinds of SO interactions, but the essence of the SO coupling
Lorentz force. It has been shown that a moving spin withis the interaction of the external electric field on the moving
velocity v inside an electric fieldE is subjected to a torque spins.

action with an interactive potential energy?®
I1l. SECOND QUANTIZATION OF THE DEVICE

HAMILTONIAN

eh
s0°(V X E), (4)
4meC In this section we second quantize the device Hamiltonian
wherem, is the electron mass,is the speed of light, and the (1). The focus is to derive the second quantization of the
electron spin iss=(%/2)o. Of course, this is a classical ex- Rashba SO interaction in a spectral form.

pression. A. Without SO interacti
To quantize the classical torque enefdy, we make the ' I. ou neraction —
following replacements: electric fiel& — VV(r)/e where The second-quantized form for the Hamiltonidn of the

V(r) is the potential energy of the system, and the speed Metal-QD-metal device with nonmagnetic legd@s=0), in
—p/m, wherep is the momentum operator. The quantum-Zero magnetic fieldB=0), and without SO interactiofia

mechanical correspondence of expressinbecomes =0) can be approximately written in the standard Anderson
model,
hoo. . _h
8m§cz(0'[p X VV(r)]=o+[VV(r) X p]) = 8m§c2(0"[p H=Hop+ > Hg+ Hy (8)
B=L,R
X VV(r)]+ VV(r)s(a X p)), (5

whereHqp is the Hamiltonian for the QD regiort; is for
where 6=(0y,0y,0,) is the vector of the Pauli matrix. Ex- the leads andHy is the coupling between the leads and the
pression(5) is exactly the general form of the SO interaction QD,

Hamiltonian, usually derived from the Dirac equation in the

_ i A a
low-speed limits* Therefore, the essence of the SO interac- Hop = > €n0nns + > UnsnsMnsms s (9)
tion is simply the action of an external electric field on a s nsms'(ns#ms)
moving spin.
If the potential V(r) has spherical symmetry, i.eV(r) Hﬁ:kz €kpP 5sBips, (10)
,S

=V(r), we haveVV(r)=(r/r)(d/dr)V(r). Then the general
spin-orbit interaction of Eq(5) reduces to the following fa-

miliar form: Hr= > [tkﬁnalﬁsdn; H.c.]. (11
kg,n,s
1 .1d., . - o . .
HSO_——ZmécderV(r)s- l, (6)  The quantityf,s=d'd.s s=1,] (or + and 9 is the spin

index, which also describes the spin states, &k (1,0)"

where the orbital angular momentum operatofr:is xp. In and(0,1)T for the spin-up and spin-down states, respectively.
fact, Eq.(6) is the well-known Thomas SO coupling. n is quantum number for the eigenstates of the single-particle
When our device is made of a two-dimensional electronHamiltonian Hs [Eq. (3)] in the isolated QD region with
gas(2DEG) in which the electrons are strongly confined in €igenenergy,=(n|H¢n). k3 is the quantum index for legd
the y direction by a confining potentiaV/(y), such that with eigenenergye,z=(kBHJkB)(B=L,R). tyz,=(kB|H4n)
dVv/dy> (dV/dx),(dV/d2), then VV(r)=y(dV/dy), and the describes the coupling strength between the leads and the
electric field is almost along the direction. Furthermore, if QD region. QuantityUpg,y =(ns,ms|e?/2|r;~r,/4ms ,ns)
V(y) is asymmetric with respect to the reflection poyst0, is the matrix element for the two-bodye interaction. Here
then the matrix element¥ (y)|(d/dy)V(y)|¥(y))#0 where the e-e interaction in the leads region has been neglected.
WP(y) are the basic bound states in thedirection. Under Note that whenM =B=a=0, Hs does not depend on the
these conditions, the general SO interaction @&y.reduces Pauli matrixa; therefore[o, Hs]=0 ande;, €, andtyg, are

to the Rashba SO interaction foAh?’ all independent of the spin index
Ferromagnetic lead® ;# 0 andH; of Eq. (3) contain a

term o- M. Let us assume thail ; has a constant value in
each lead3 althoughM | # My in general. By calculating the
matrix elementskBs|o- Mglk 8s')= G (G M p)sg, the sec-
ond quantization for this term can be easily obtainkeld.
becomes

Hoo= o [alex p) + (& X pal, ™
where a~(¥(y)|(d/dy)V(y)|¥(y)) is the interaction
coefficient3® Note that an asymmetrical confining potential
in the direction perpendicular to the 2DE@e ¥ direction
is necessary, otherwise=0, and there would be no Rashba _ + T At
SO interaction. It is worth mentioning that the Rashba SO Hp= 2 eigipsdias + 2 (Bgy.au5)5 - Mg ag )
interaction strengtlw can be tuned in an experiment by an ks K pl
external electric field or gate voltage, which has already beeBue to the existence af- M, the statgkgs) is usually not
done in some recent experimefts®*Finally, if we consider —an eigenstate of isolated legl and<alﬁsakﬁs> is not equal to
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A A

) “ 1
’ ;{ ! o [ak0E X )+ (& X P)at)] = Sy
M, . a(X)o:
. 2 + o pa(X)] - Txpz = Hpy + Hpo. (13
z
Left FM Center region, QD Right FM

For transport direction along the axis as shown in Fig. 1,
FIG. 2. (Color onling Schematic diagram for the spin coordi- tN€se two terms have some essential differences. The first
nates, i.e., the spin-up direction in the left lead, the center regionl€™™M Hry gives rise to a spin prece$5|6|‘7\/hl|e the Sef{ond
and the right lead, respectively. term Hg, does not. In particulatdy; includes asd-function
factor at the metal-QD contactz=x,,r, see Fig. 13637 For
the Fermi distribution functior 4(e.z), even in equilibrium this reason it cannot be second quantized by simply calculat-
. B kB q © . ing the matrix elementngHg,/ms'). To overcome this diffi-
In order to conveniently solve the transport problem, we di- it has 1o ch Rl basi tin the OD. This will
agonalizeH; above by a rotational unitary transformation. SU'ty: ON€ Nas o CNOOSE a NEW basis Set in e QD. This wi

- - : be accomplished in this section and tHg, term will be
This is accomplished by settin A
P y g studied in Sec. Il C.
Qs cose4p2 gin Segidp2 For clarity, the real-space single-particle Hamiltonian con-
B | _ 2 2 g1 idered in thi bsection |
= 0y oz s g2 , sidered in this subsection is
Qg - sin2€%? cosZe %2 | \ag

2 2
P+ P -
where ¢ and ¢, are the directional angles of the FM mo- Hi(r) = =2 +V(r) + 6 - M(r) + Hgy. (14)

ment M ;. Under this rotational transformation, the total 2m
second-quantized Hamiltonian of the metal-QD-metal devicé his is just Eq.(3), but with only theHg; part of the SO

becomes interactions. We make a unitary transformation with the fol-
o lowing unitary matrix:
HQD = E Endgsdns+ E Unsms’ NndIms s r
ns nsms (ns#ms') 1 X<X_
X
Hy= 2 (s *+ SMp)ajs i, eXp{‘ i"ZL kR(X)dX} XS XS XR
ks u(x) = 9 . (15)
0 .0 . [R Xg < X
Hr= E [tkﬁn<cos—2§aﬁﬁs— ssin —Zéalﬂs> exp{— Iozf kR(X)dx} R ,
kB,n,s \ XL
, wherekg(x) = a(x)m' /%2, Here a(x) is permitted to have a
Shgl2 R
X 08 dys+ H C} (12) dependence on the spatial coordinataside the QD, and it

is zero outsidéxg<<x or x<x, see Fig. L Under this uni-

where Mz=|Mg|. This form of the Hamiltonian has been tary transformation, the original basis functions in the QD
used beforé® but two important comments need to be made:region, INT)=¢,(r)(1,07 and |nl>:¢;(r)(0,1)T, are trans-

(i) In Hamiltonian(12), the stateskgs) are eigenstates (i

for isolated leads; hence in equilibriu(alﬁsakﬁngﬁ(ekﬂs) L
with €s= €5+ SMg. (ii) After the rotational transformation, . — arif% kg()dx

the spign-up '?Jlirectiﬁon in the left FM lead, the QD, and the In1)" = uG)Int) = €™ (P“(r)(0>' (16
right FM lead are all different, although they are all aligned

in their localz directions. These local coordinate systems are , P k(x> 0

shown in Fig. 2. In the QD, the spin-up direction is still in In1)" =u(x)[n]) = "5 K% (r) 1) (17
the originalz axis, but in the left and right FM leads, the

spin-up direction(i.e., the localz direction is aligned with  These new basis functions are used to second quaidze
the FM momentM, (see Fig. 2 Although this difference  After the unitary transformatiorti’ of Eq. (14) becomes
in spin-up alignment is not important when the QD bridging

formed to

. . oo ! , p2+p? 712K3(x)
the leads has only a single connectisach as in Fig. ), it HY = u)THIU) = 22 +V(r) - ——~ + 0 - M'(r),
is important if the QD region has double or more connec-
tions (such as in Fig. b (18

_ _ whereM| =M and|Mg|=|Mg|, but the directional angles of
B. Rashba SO interaction (I) M{, are changed t00r, pr—2¢so) With pg= fﬁfkR(x)dx
In this section and Sec. Il C, we second quantize the The essence of the above unitary transformation is the
Rashba SO interaction, which is a major component of thigollowing.
paper. The Rashba SO interactitf) can be split into two (i) It is equivalent to choosing a space-dependent spin
terms, coordinate, as shown in Fig(a8, in which the spinz direc-
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(a) This is one of the main results of this paper. The Rashba
interactionHg,; gives rise to an extra spin-dependent phase
1 factor —S¢, in (20): it is —¢g, for s=7 and +pg, for s=|.

s Note that the term with this phase factor satisfies the time-

reversal invariance whilél ;=0, i.e.,[T,H]=0 whereT

is the time-reversal operaté?.This is an expected prop-

erty because the Rashba SO interaction in real spage

(7)] does satisfy the time-reversal invariansee the Ap-

pendix). We emphasize that the phase factsepg, in Eq.

(20) is fundamentally different from the phase factor

caused by magnetic flux in systems such as Aligering;

the latter is independent of sp®) and it destroys time-
FIG. 3. (Color online (a) Schematic diagram for the spin- reversal symmetry.

coordinate axis in different positions. Here thendy spin direc- For the special case whekg(x) =kg=const, i.e., indepen-

tions are rotated along theaxis in space(b) Schematic diagram dent of coordinatex of the scattering region, we hawg,

for the dispersion relation before and after the unitary=kgX (xg—X_). Then, redefining s*d,— d,s, the Hamil-

transformation. tonian (20) can be rewritten in a symmetric manner,

HQD = E Gndzsdnsv

ns

(b)

es]
ool

kX kX

tion is fixed everywhere, but the spfhand spiny directions
are dependent on the space positioin different positions
along thex axis, the directions of the spi;y axis are ro-
tated. In other words, the unitary transform changes us to a
rotating frame. It is well known that for an electron moving
along thex direction, the Rashba teridg, gives rise to a
spin precessiof!® That is, the spin component in they
plane will rotate as the electron moves along khdirection,
therefore the electron spin is usually not invariant. However,
in the rotating frame which follows the spin precession, the
spin is invariant; hencBH?', &,,,,]1=0 is satisfied in the QD
region.

(ii) The Rashba interactiaf; can cause an energy split
between spin-up and spin-down states for nonzggoas
shown by the energy dispersion in the left panel of Fig.
3(b).?138 The above unitary transformation recovers the .
alignment of the two dispersion curves, so that the right NOW We second quantize the second term of the Rashba

panel of Fig. 8b) is obtained. Therefore, after the unitary Interaction[Eq. (13)], Hro=—[a(x)oyxp,/%], which can be

Hpg= kE (ék,B + SM,B)al,BsakBs’
S

Hr= E

0 .0
{tkﬁn<cos—2§alﬁs - ssin —Zéalﬁs)
k.n,s,B

X SPp2giSRd + H c.}. (21)

C. Rashba SO interaction (ll)

transformation, the new HamiltoHéy appears to be com- accomplished ~ by calculating ~ the  matrix  elements

pletely the same as the Hamiltonian without the Rashba i

teractionHg,, except a rotation of the magnetic momaémng
and a potential energy difference, [#2k(x)/2m’]=
-m’ a?(x)/(24?), which is a simple constant #(x) is inde-

pendent ofx. Using the same method as that used in Sec.

[l A, the second quantization of E@18) is easily obtained,
H=Hgp+ X Hg+Hr,
B=LR

HQD = E fndlsdnsa

ns

Hp= 2 (€ks+ SMp)al ey (19)
k,s

HTZE

k,n,s

0L . 0L .
|:tkLn( COSEaELs -ssin E@L?) eIS('bL/Zdns
0, 0 . _
+ th,,<cosERale— ssin ERaIR_s) R 2gmiSbsed]

+H.c.]

(20)

n{ms’|u(x)THR2u(x)|ns>:<ms'|H,;2|ns>. If s'=s, this matrix el-

ement is exactly zero. Hence we only need to calculate the
nondiagonal matrix elements, and they are

, - fik .
<ml|HR2|nT>=TR f dr & 2K (1) pgn(r) = 55,

(22)

- ik .
(n|[Hgylm?) = m*R f dr e 2KR g (1) (T

fik o
- F*R J dre 2IkRX(Pm(r)pz(Pn(r) == trSnom

(23)
(NT|HRIm]) =652, (24)
(MTHRoINL) = = 5. (25

Here (as well as beloywwe have assumekk(x) [or a(X)]
to be independent of, but even ifkg(x) depends orx, all
results are completely the same. With the above matrix ele-
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ments[(22)—(25)], the second quantized form bfg, is e?

H|(r1,l’2,...rN)= E —2 >
Lii#]) |ri_rj|

Hre= 2 toofdhdy —didnl+H. .,

we apply the unitary transformation, and the new Hamil-
m,n(m<n)

tonianH, is
which can be written in the more compact form, e e
H = > UT(Xi)UT(Xj)ﬁU(Xj)U(Xi)z > PPE
(%) Iri=rj ijizp 2ri =Tl

This meandH/=H,, and the unitary transformation does not
affect the form of thee-e interaction. We therefore can di-
o _ © . rectly write the second-quantizese interaction in its famil-
yvhere it is important to real'lze thaf, = -t Equation(26)  jar form,
is another main result of this paper.

Some general characteristics of Eg6) are, in order. H, = > Unsmsldgsdnsd;]s,dmg, (27

(i) The propertytyo =—t>> for the matrix elements origi- nsms (ns#ms)
nates from the time-reversal invariance of the original real-

ms ,ns>.

E. External magnetic field

Hro = %t;"ndjmdm +H.c., (26)

space Rashba Hamiltonid&hUsing this property, we can ex- where the matrix elemerdnsms IS

actly prove that the second-quantized form K&, [Eq.

(26)]indeed satisfies the time-reversal invariafite. Unsms = <n3 ms
(i) If n=m, we havety,=-t>% hencet;) must vanish.

This means that the Rashba SO interaction cannot induce any

intralevel spin flip, i.e., it cannot give rise to a transition

(nT)—(n]) in which the level index is the same. There-

fore, the SO interactiof26) is fundamentally different from The unitary transformation$Eq. (15)] do affect the

that of an external magnetic field. A magnetic field can caussecond-quantized form of the external magnetic figtel3.

intralevel spin flip, provide a Zeeman energy that relievesConsider an arbitrary external magnetic fi@le (By,By,B,),

spin degeneracy, and induce spin polarization in an isolatedhereB,,,, is projected in thex/y/z direction.

QD (see Sec. Il E, beloy First, we investigate the-direction elemenB,. Under the
(i) The Rashba SO interactid@6) can cause spin flips unitary transformatiofiEq. (15)], the termé,B, changes to

between different energy levels. This interlevel spin-flip cou- n B kxn o B keX —

pling is similar to the intersubband mixing in real space, u'(x)aBu(x) = €77% o, B, 7R = 0,B,,

which has been studied in previous wotRDespite the in- which meansy,B, does not change under the unitary trans-

terlevel spin flips, the system is still at Ieast- twofold degen-ormation. Therefore its second-quantized form is still
erate for any eigenstates, becatf§e=-t;". This guarantees

that at equilibrium an isolated QD has no spin polarization. > SBzdgsdns- (29)
In the Appendix , the general properties of Eg6) are fur- ns
ther discussed.

(iv) In fact, because all spin-orbit couplings satisfy time-
reversal invariance, the above properties and matrix elemeng
tmn=—t,m Must hold true in general. In this regard, we note
that there exist papers whettg,=t,,, and intralevel spin flips
are allowed; these effects cannot come from SO interaction
as sometimes claimed. i - o -

Let us estimate the value of°. Consider a square QD (mIU&Byint) = (miuaBinl) =0, (29
with linear size W. The eigenstates areqy(r)

2ry—ryf?

Second, we investigate ttxedirection elemenB,, i.e., the
grm 0,B, in the Hamiltonian. After the unitary transforma-
ion [Eq. (15)], uT(x)(6,B)u(x) # 6, B,, so that it is affected
by the transformation. The matrix elements
§m3|uT(x)&xBxu(x)|ns) are found to be

=(2/W) sin (nymx/ W) sin (n,mz/ W), hencet’, can be easily (m||u'&,B,unT) :f dre 2R g (1) @n(r)By = 8 By,
calculated from Eq(22). For parameter$V=100 nm,a=3
X101 eV m andm’=0.036n,, the intradot level spacing (30)
Ae=~h?m?[2m"WP~1 meV. This is to be compared with a
. S0 - 2 * _ — R
rough estimate oft;S| ~ 7%kg/m W=a/W~0.3 meV. (n||u'G,Bumt) =13 B,, (31)
D. Electron-electron Coulomb interaction (n7|u’&,Byuim]) = (mf|u'o,Beuln|) = tﬁ*nBX. (32

In order to second quantize the Rashba SO interaction, wegence, the second-quantized formagB, is
have introduced a unitary transformation defined by (Ef). B rat T B .t
Does this transformation affect the familiar second-quantized mn(zn‘; - Byt A, Aoy + Aoy ] + En: Budnndn dny +H . C.,
form of thee-e interaction? Here we show it does not. '

Starting from the two-bodg-e interaction in real space, or it can be written in a more compact form,
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1.0 —m=1

0.8

FIG. 4. (Color onling The spin-flip coupling strengttﬁ11 Versus
the Rashba SO interactidgL. As kgL increases, more modés)
are playing a role.

> BtE dhdy+H.Cc., (33)
m,n

with t2 =t8  Note that the form of Eq(33) is very similar
to the Rashba terg,, [Eq. (26)], but there exists an essen-
tial difference. Namely, for the magnetic field in thelirec-
tion, t& =t2_in Eq. (33), while for the Rashba ternt3% =

mn

-t>> in Eq. (26). We emphasize that this is an essential dif-

ference because of two reasons:

PHYSICAL REVIEW B 71, 165310(2005

FIG. 5. Schematic diagram for the modifi&B ring device.
Two normal leads are coupled to the center ring, a magnetic flux
threads the ring, and a QD is embedded in one arm of the ring.

metal-QD-metal, where there exists Rashba SO erdn-
teractions in the QD, the metal leads are magnetic material,
and there exists an external magnetic figldHamiltonian

(1) becomes

(i) The magnetic-field term destroys the time-reversal in-

variance, it provides a Zeeman energy that breaks the spin
degeneracy of the energy levels, and it can induce a spin

polarization in equilibrium. In contrast, the Rashba tég)

satisfies the time-reversal invariance and maintains the two

degeneracies.

(i) Whenn=m,t2 can be nonzero so that intralevel spin

Tnn

flips are possible. Furthermore, th]%1 term is usually the
largest term in the sum of E433), e.g.,t2 =8, at kg=0.
But for the Rashba interactiof26), t;° must vanish as dis-

H=Hop+ X Hy+Hr, (34)
B=LR
where
HQD = E (en+ SBz)d::sdns"' E Unsms’ ﬁnsﬁms'

ns nsms (ns#ms)

+ 2 [ty Oy + Btb iy doy +H. .1, (39)
mn
Hpg= kE (g + SM,B)alﬁsakBSi (36)
S

0 .0
Hi= > {tkﬁn<cos—§alﬁs—ssm—§alﬁg)
k,n,s,B 2 2

X @S2SR+ H . c} , (37

cussed before, so that it cannot cause intralevel spin flip. WevheretS% =—t2° andt? =t?  This Hamiltonian is the central

therefore comment that interactions of the following form,

(which have been used in some previous litergture
t t
tdd; +td;d,

result of this paper. The Rashba SO interaction causes two
effects:(i) It gives rise to an extra phase fact@kgx, in the
hopping matrix element between the leads and the QD. Note
that this phase factor is dependent on the electronic spin

do not represent the SO interaction. Rather, they describe @nd it is essentially different from the usual phase factor due

magnetic field pointing to the direction.

In order to estimate the value ¢,, we consider a rect-
angular QD with lengti. and widthW. t2_ can be obtained
as

1
J dxe 2KRX sin marx sin nyarx.
0

tn= 26m n,

Figure 4 plots the numerical results ftff, versus the
parameterkgL that is obtained this way. ARgL increases,
moret?, are in action. If the parameters=2x10"*' eV m
andL=100 nm, we havéglL ~1 for m"=0.036m,. For this
keL value, onlyt?, andt5, are significant.

Finally, the second quantization of tti&, term is com-
pletely the same as that for tlkedirection; hence, its second-
guantized form is the same as E§3).

F. Brief summary

to a magnetic flux which is independentfii) The Rashba
SO interaction causes an interlevel spin-flip term with the
strengtht>>, and it cannot cause intralevel spin flips. The
time-reversal invariance is maintained by the SO interaction,
which is essentially different from the effect of an external

magnetic field.

IV. EXAMPLE: TRANSPORT PROPERTIES OF AN AB
RING WITH RASHBA SO INTERACTION

As an example of applying the second quantized Hamil-

tonian Egs.(34)—37), we now investigate the quantum-
transport properties of a modifigkB ring (shown in Fig. 5.
A QD sits on one arm of the ring and a Rashba SO interac-
tion exists inside the QD. No Rashba interaction exists on the
other arm of the ring. The ring is connected to the outside
world by two normal metal lead#\B rings with an embed-

Collecting all the pieces of second quantization which weded QD have been studied in many previous wdPké3
have carried out in this section, for a device in the form ofSome interesting phenomena, such as, for example, Fano
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resonancél-*3 have been discovered in such a device. The Gydt) = i(dl(0)dy(t)). (40)
effect of the Rashba interaction has not been studied so far, _ .

and we have found that it leads to interesting transport be- 10 SP|V?G , we first calculate the retarded Green func-
havior. In particular, a substantial spin-polarized current offions G using the Dyson equation,

conductance is induced by a combined effect of the Rashba S S ST

SO interaction and a magnetic fluk threading through the Gs= 05+ 0e2sCs, (41
AB ring. The direction of the spin polarization and its and the Green’s functio; is a 3x 3 matrix defined as
strength are easily controllable kfyor by a gate voltage.

The Hamiltonian of ourAB ring (Fig. 5 can be written Lts Girs Glus
using various pieces of the general Hamiltonifags. Gi=| GRis Gkrs GRus |- (42)
34)—(37)],
( )_( 7)] G(ers G(rsz Gtrjds
H= X eadpdamst > edids+Uddidld, In Eq. (41), gy is the Green's function of the system without
ksB(B=L,R) s coupling between the leads and the Q[., whent, g=t, 4

=trg=0). It can be obtained exactly as
+ 2 e[l Brst Ankikel + 2 [t s Rd Y
k,s k,s

-imp 0 0
+ig e Sebe ¢a;kgs] +H.c. (38) gi(w) = 0 ~—imp 0 , (43
As discussed previously, the physical meaning of each term 0 0 Juadw)

is clear. The first term describes the normal metal leads; th@,heregads(w)z(w_fd_u+U@/[(w_€d)(w_ed_u)] andng
second term is for the QD which has a single energy levejs the intradot electron occupation number at s&jein Eq.

with spin-indexs; the third term is the intrada-e Coulomb (43) s the density of state of the leads. The self-endiffy)
interaction with a constant strength the fourth term is for Eq. (41) is*

the arm of the ring without the QD; and the fifth term is the

coupling between the leads and the QD. Due to the Rashba 0 tr ftug
SO interaction, according to Eq37) there is a spin- o) =|te 0 T 44
dependent phase factosksL in the hopping matrix element (@) tRoT Ras (44)
trq ON the fifth term. Since we only consider one level in the tlg tras O

QD, the interlevel spin-flip term of Ed35) does not appear Tt iskalaid ; r
here. This is equivalent to neglecting the intersubband mix\_év:Se"ri t,g(: é%“ginedel b'yugg;\?inzqsbglssgnésndégﬂ; (;sscép
ing as in some previous workd/Ne emphasize that both the =(gr_l—2's)‘l ] s
e-e Coulomb interaction and the Rashba SO interaction are =3 N ' , L~
After solving Gy(w), the Keldysh Green’s functioB_ (w)

i hich is diff f i i f th . :
;%lﬂggrg% \ilxtelz(;aclt?oglvfhrgge gggrgéﬁgflﬁaztﬂggzc?e; ecan be obtained straightforwardly from the standard Keldysh

Indeed, our second-quantized Hamiltonian in the spectra‘?quaﬂon'

space[Eqs.(34)—(37)] aIIows. us to considgr both effec_ts to- G =(1+G3Dgs(1+33GH) +G3 G2

gether. Finally, the magnetic flup threading theAB ring e Aadma ot ma

gives rise to a familiar spin-independent phase faafor =G 9:9¢ G+ GG (45)
=27d /Dy in the matrix elementgy. r-1.<

For our present casg,; =0 and 21is diagonal, with
The quantum-transport problem described by Hamiltonia 14 ga—1:2if (wf/frp(,@zL %5) gsa?fd gr—lsg% gil=0
(38) can be solved by standard many-body techniques. In th ﬁ;rgﬁf‘jﬁ;:l /fe(w_ﬂﬁ)/ksu 1] is the Ferrdr;ji ?j?stcriidtfution
following we calculate the charge current using the Standar%nction in lead 3. As the last step, the intradot electron
Keldysh nonequilibrium Green'’s function method. Following ) ’

. : occupation numbeng needs to be solved self-consistently
Ref. 23, the charge current flowing from the left lead into theWith the self-consistent equation=-i | (de/2m Gyl w).

ﬁ\s(glgrgi;\,/ec(;)rgsnbuted by spin-up or spin-down electrons, can In the following we present the numerical results. Figure
6 shows the total linear conductan@=X=(dls/dV) versus
2¢ [ do the intradot-level positiorey at zero magnetic flux¢=0),
|s=; oy Rt 4Ggidw) +trGrid@)], (39  but with different Rashba interaction strengthL :kgL=0
7 (solid), /4 (dashed] 7/2 (dotted, 3w/4 (dashed-dotted
where the Keldysh Green's functiocB<(w) is the Fourier and 7 (dashed-dotted-dotte¢dThe curves are dominated by
transform ofG=(t), and its definition is two Coulomt_) peaks. a¢d=0 and ed=—u. When there is no
Rashba SO interactiofi.e., kgL=0, solid curve, these two
< . t peaks show a typical Fano resonance shape due to the inter-
Gﬁﬁ’s(t) - '<2 ak’ﬁ’s(o)% akﬁf'(t)>’ ference of electrons passing the two arms of Aligering, in
. agreement with previous theoretical and experimental
studies’®*1 It is interesting to discover that this Fano reso-
Gf; () = i<dl(0)2 akﬁs(t)>v nance can be strongly affected by the Rashba SO interaction.
k While increasing the Rashba parametgr from 0, the Fano
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€4 for kgL=0 (the black solid curve =/4 (the red dashed curye
7/2 (the magenta dotted curye3w/4 (the blue dashed-dotted
curve, and (the purple dashed-dotted-dotted cyrwespectively.
Other parameters ardry=t 4=0.4, t g=0.1, p =pr=1, kg7
=0.0001,U=5, and¢=0.

G+ and Gu (e¥/h)

resonance is decreased, and it can completely disappear at
kgL=1/2 (dotted curveé While further increasindgL, the
Fano resonance rises up again, but with an opposite Fano
factor, for example, akgL =7 (dashed-dotted-dotted cupve

In order to understand these results, we investigate the FIG. 7. (Color onling Conductancés; andG, versus magnetic
interference term of total transmission probability, which isflux ¢ for several intradot levelda) e;=1; (b) €4=0; and(c) €4=
approximatively proportional to~=,cogA6f+sksl). Here  —1. The solid, dashed, and dotted curves correspondcgto
A¢ is the phase difference of the transmission amplitude=0,7/4, and /2, respectively. The thick curves af& and the
through the two arms, and it varies from 0462 and finally th_|n curves are5|. The other parameters are the same as those of
to m, as e is moved from < to 0 and finally to. This ~ F9- 6.
clearly shows that the total transmission probability is indeed .
having a Fano asymmetric-resonance shape waer0 or ~ namely, a few half widthd™ of the Coulomb peak(The
. On the other hand, it is symmetric kfL=/2 or 3z/2. ~ Parameters used in Figs. 7 and 8 correspond Ito
Hence, the Rashba SO interaction can alter the Fano reso:27ltgal*~1). This means that in an experiment one only
nance shape in substantial ways.

Next, in the three panels of Figs. 7 and 8, we plot con- :
ductanceGg and spin polarizationp=(G,;-G,)/(G;+G)) 05 E
versus magnetic fluxp for three values oky=1,0,-1, re- :

1.0

spectively. These values @f; are near the right Coulomb =00
peak of Fig. 6. In Fig. 7, the thick curves are 8y, and the 05 E
thin curves are foG,. The solid, dashed, and dotted curves F
correspond to different values of the Rashba paranigier 1.0 F
=0,w/4, andw/2. Figures 7 and 8 clearly show that if either N
one of the two parametefg andkgL) vanishes, the trans- “F
port current has no spin polarization, so that0 andG; = 0.0 F
=G,. However, when both parameters are nonzero, a sub- 3
stantial spin-polarized conductance is found ancan be as 05F
large as 90% for the given set of system paramdteigs. 10E
8(a) and &c)]. :
Importantly, in the present device the directions of spin 05 F
polarization and its strengtty) are easily controllable by = 0.0 :
varying system parameters, which are experimentally acces- '
sible. (i) By varying the magnetic fluxp: when ¢ is tuned 0.5
from —7/2 to 7/ 2 (or from 7/ 2 to 3w/ 2), the polarizatiory
strongly varies from a large positive value to a negative 1.0

value or vice versdii) By varying the intradot leved; using

a gate voltage: whegy is moved from one side to another
side of a Coulomb peak, the polarizationcan be tuned FIG. 8. (Color onling Spin polarization; versus magnetic flux
from its largest positive value to its largest negative value ofp for kL. =0 (dashed curve 7/4 (solid curvey, and /2 (dotted

vice versa. Numerically we found that one only needs tocurve, respectively. The other parameters are the same as those of
changeey by a small amount to see the polarization changeFig. 6.
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needs to slightly vary the gate voltage to changieom 1to  No. 90303016 and No. 1047412R.F.S); a RGC grant from
-1 or vice versa. Furthermore, we note that when polarizathe SAR Government of Hong Kong under Grant No. HKU
tion 7 reaches its largest value, the conductance itself is stilf044/04RJ.W); the NSERC of Canada, FQRNT of Québec,
large, e.g.G; or G, can exceed over 0e8/h [see Fig. 7a)]. and Canadian Institute of Advanced ResedtdlG). Q.F.S.
Finally, we estimate if the parametéglL can reach a gratefully acknowledges Professor X.C. Xie for helpful dis-
value of /2 in the present experimental technology, thecussions on the general physics of SO interaction.
above theoretical predictions can be observed experimen-
tally. Assuming the Rashba SO interaction strengtk 3 APPENDIX
X 10 eVvm, which is the reported value for some In this Appendix, we collect some general properties of
semiconductor$332:33  ke=m'a/A2~0.015/nm for m’  the spin-orbit coupling. Although these properties should be
=0.036n.. Then, if the length of the QD is the typical value well-known}2 we believe it is useful to put them in a form
100 nm,kgL = 1.5. Therefore we conclude thigtL can reach that is easily accessible. In addition, these properties hold for

a value~ /2 or larger experimentally. all spin-orbit interactions, including the Rashba SO interac-
tion.
V. CONCLUSION (i) The SO interaction HamiltoniaH, [Eq. (5)], satis-

] ] ] _fies the time-reversal invariance. In other wortg, com-

In this paper we have derived a second-quantized Hamilytes with the time-reversal operafbr i, K (whereK is
tonian in spectral spacefor a general device structure of the complex-conjugation operajotndeed, using the Hamil-
metal-QD-metal configuration, including the spin-orbital andionian H,, of Eq. (5), it is easy to provéT,H,]=0.

e-e interactions. In other words, we extended the standard (i) When a system has spin-orbit coupling, each eigenen-
Anderson Hamiltonian to the case in which the central de—ergy level is still at least twofold degenerate, i.e., the so-
vice region has dRashbg spin-orbital interaction. We dis-  cjied Kramer's degeneracy exists. Briefly this can be proved
covered that the Rashba SO interaction causes two changeg; follows. We start from the Hamiltonig# of Eq. (3) but
(i) It gives rise to an extra spin-dependent phase faCtOEettingB:M(r):O in (3), we assumep,(ry,fy,...ry) IS an

—skxz in the couplin.g matrix elements l_:)etween the Ieadseigenstate ofH, so thatH|e,)=E,¢,). SinceH is time-
and the quantum dotii) The Rashba SO interaction causes o arsal invariant (TH=HT), we have HT|¢)=TH|¢y)
i n n

. o ) o_ < so .

an mt:,\rlevel Sp'n'ﬂ'? tlermlwn_h ?lt_rengtt;n— thm @nd it =E,T|¢n). Hence, statdl|¢,) is also an eigenstate with the

Car}r;]% sC a:stera??grrlwr": (r)? ti]éeH;pr:”nr;ltc:r?;n is very important assame eigenenerdf, as that of the statggy). Furthermore,
P y imp one has (¢n|Tlen)=(¢n, Ten) =(T2en, Ten) =~(en| Tlen),

it allows the analysis of many complicated quantum- o . .
transport problems involving SO amege interactions, by us- hence(e;|Tlen) =0. This means staftl,) is orthogonal to
|en. Therefore, although spin is no longer a good quantum

ing the well-established many-body Green’s function theo h . . e
g y y umber when the SO interaction exists, the system is still at

retical techniques such as the Keldysh nonequilibriu fold d f fits ei :
Green’s function formalism. On the other hand, it would be east twofold degenerate for any of its eigenstates.
(iii) At equilibrium, a spin-orbit coupling cannot induce a

much more difficult to carry out similar investigations using . S )
spontaneous spin polarization. We prove this as follows.

a real-space Hamiltonian, especiallyefe interactions are ; N o
present Since the system is in equilibrium, the twofold degenerate
' ﬁigenstate$gon> and T|¢,) have the same occupation prob-

As an example, we investigated the quantum-transport - : ST
properties of aAB ring in which a QD having Rashba SO ability p(E,). Then, the average of spin polarization in an
arbitrary directionn can be calculated as

and e-e interactions is embedded in one arm of the ring. A
su_bstan_'ual spin-polarized current or conductance emerges in (67) = D PEN{@nlGalen) + (Tonl o4 Tom]
this device due to the combined effect of a magnetic flux and n
the Rashba SO interaction. In particular, the direction of the R R
spin polarization and the strengthcan be easily controlled = 2 P(EW(enlGalen) + (Ten| = Tl )]
by a number of experimentally accessible parameters. n
=2 P(ED{@nl Gl en) = (@nl Gl @n)] = 0.
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