73 research outputs found

    Sub-system mechanical design for an eLISA optical bench

    Get PDF
    We present the design and development status of the opto-mechanical sub-systems that will be used in an experimental demonstration of imaging systems for eLISA. An optical bench test bed design incorporates a Zerodur® baseplate with lenses, photodetectors, and other opto-mechanics that must be both adjustable - with an accuracy of a few micrometers - and stable over a 0 to 40°C temperature range. The alignment of a multi-lens imaging system and the characterisation of the system in multiple degrees of freedom is particularly challenging. We describe the mechanical design of the precision mechanisms, including thermally stable flexure-based optical mounts and complex multi-lens, multi-axis adjuster mechanisms, and update on the integration of the mechanisms on the optical bench

    Lasers for LISA: Overview and phase characteristics

    Get PDF
    We have investigated two alternative laser systems for the Laser Interferometer Space Antenna (LISA). One consisted of the laser of LISA's technology precursor LISA Pathfinder and a fiber amplifier originally designed for a laser communication terminal onboard TerraSar-X. The other consisted of a commercial fiber distributed feedback (DFB) laser seeding a fiber amplifier. We have shown that the TerraSar-X amplifier can emit more than 1W without the onset of stimulated Brillouin scattering as required by LISA. We have measured power noise and frequency noise of the LISA Pathfinder laser (LPL) and the fiber laser. The fiber laser shows comparable or even lower power noise than the LPL. LISA will use electro-optical modulators (EOMs) between seed laser and amplifier for clock noise comparison between spacecraft. This scheme requires that the excess noise added by the amplifiers be negligible. We have investigated the phase characteristics of two fiber amplifiers emitting 1 W and found them to be compatible with the LISA requirement on amplifier differential phase noise.DLR/50 OQ 0501DLR/50 OQ 060

    Fiber modulators and fiber amplifiers for LISA

    Get PDF
    We present the sideband phase characteristics of a fiber-coupled integrated electro-optical modulator (EOM) at a modulation frequency of 2 GHz for Fourier frequencies from 0.1 mHz to 1 Hz. The upper phase noise limit was almost an order of magnitude better than required for LISA. The EOM's phase dependencies on temperature and transmitted optical power were measured and found to be uncritical. Additionally we have investigated three optical amplifiers emitting 1 W. Their differential phase noise and optical pathlength noise as one contribution to differential phase noise were measured. The measured differential phase noise was within the requirement. The dependencies of differential phase noise on pump power were measured and requirements for the operation of the amplifier on the LISA satellite derived.DLR/50 OQ 0601DFG/EXC/QUES

    Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling

    Get PDF
    The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments

    Parameteridentifikation und Virtuelles Prototyping von Nanopositionier- und Nanomessmaschinen basierend auf Methoden der Mehrkörperdynamik

    Get PDF
    In Nanopositionier- und Nanomessmaschinen sollen hochdynamische Präzisionspositionierungen durch Kombination von Positioniersystemen mit großen und kleinen Bewegungsbereichen erreicht werden. Mit einer modellgestützten Simulation des dynamischen Verhaltens in frühen Phasen des konstruktiven Entwicklungsprozesses können Positionierbereiche von 450 mm x 450 mm mit Nanometerreproduzierbarkeit bei Bahngeschwindigkeiten bis 0,5 m/s erreicht werden. Aymptotische Methoden werden auf Minimalmodelle der NPM-Maschine angewendet, um analytische Lösungen für Schwingungsprobleme zu entwickeln. Dabei wird der Fokus nicht vorrangig auf die Lösung der Direkten Aufgabe der Dynamik gelegt. Vielmehr wird durch den Vergleich der analytischen Ausdrücke für die stationären Amplituden mit experimentell ermittelten Werten die Bestimmung von Parametern, die der unmittelbaren messtechnischen Erfassung nicht zugänglich sind, möglich. Zur Ermittlung dynamischer Steifigkeiten und Dämpfungen wird die Methode der Inertialkrafterregung entwickelt

    Design and construction of a telescope simulator for LISA optical bench testing

    Get PDF
    LISA (Laser Interferometer Space Antenna) is a proposed space-based instrument for astrophysical observations via the measurement of gravitational waves at mHz frequencies. The triangular constellation of the three LISA satellites will allow interferometric measurement of the changes in distance along the arms. On board each LISA satellite there will be two optical benches, one for each testmass, that measure the distance to the local test mass and to the remote optical bench on the distant satellite. For technology development, an Optical Bench Elegant Bread Board (OB EBB) is currently under construction. To verify the performance of the EBB, another optical bench - the so-called telescope simulator bench - will be constructed to simulate the beam coming from the far spacecraft. The optical beam from the telescope simulator will be superimposed with the light on the LISA OB, in order to simulate the link between two LISA satellites. Similarly in reverse, the optical beam from the LISA OB will be picked up and measured on the telescope simulator bench. Furthermore, the telescope simulator houses a test mass simulator. A gold coated mirror which can be manipulated by an actuator simulates the test mass movements. This paper presents the layout and design of the bench for the telescope simulator and test mass simulator

    Optical bench development for LISA

    Get PDF
    For observation of gravitational waves at frequencies between 30 μHz and 1 Hz, the LISA mission will be implemented in a triangular constellation of three identical spacecraft, which are mutually linked by laser interferometry in an active transponder scheme over a 5 million kilometer arm length. On the end point of each laser link, remote and local beam metrology with respect to inertial proof masses inside the spacecraft is realized by the LISA Optical Bench. It implements further- more various ancillary functions such as point-ahead correction, acquisition sensing, transmit beam conditioning, and laser redundancy switching. A comprehensive design of the Optical Bench has been developed, which includes all of the above mentioned functions and at the same time ensures manufacturability on the basis of hydroxide catalysis bonding, an ultrastable integration technology already perfected in the context of LISA's technology demonstrator mission LISA Pathfinder. Essential elements of this design have been validated by dedicated pre-investigations. These include the demonstration of polarizing heterodyne interferometry at the required Picometer and Nanoradian performance levels, the investigation of potential non-reciprocal noise sources in the so-called backlink fiber, as well as the development of a laser redundancy switch breadboard

    Experimental Demonstration of Reduced Tilt-to-length Coupling by Using Imaging Systems in Precision Interferometers

    Get PDF
    Angular misalignment of one of the interfering beams in laser interferometers can couple into the interferometric length measurement and is called tilt-to-length (TTL) coupling in the following. In the noise budget of the planned space-based gravitational-wave detector evolved Laser Interferometer Space Antenna (eLISA) [1, 2] TTL coupling is the second largest noise source after shot noise [3

    An elegant Breadboard of the optical bench for eLISA/NGO

    Get PDF
    The Laser Interferometer Space Antenna, as well as its reformulated European-only evolution, the New Gravitational-Wave Observatory, both employ heterodyne laser interferometry on million kilometer scale arm lengths in a triangular spacecraft formation, to observe gravitational waves at frequencies between 3 × 10−5 Hz and 1 Hz. The Optical Bench as central payload element realizes both the inter-spacecraft as well as local laser metrology with respect to inertial proof masses, and provides further functions, such as point-ahead accommodation, acquisition sensing, transmit beam conditioning, optical power monitoring, and laser redundancy switching. These functions have been combined in a detailed design of an Optical Bench Elegant Breadboard, which is currently under assembly and integration. We present an overview of the realization and current performances of the Optical Bench subsystems, which employ ultraprecise piezo mechanism, ultrastable assembly techniques, and shot noise limited RF detection to achieve translation and tilt metrology at Picometer and Nanoradian noise levels
    • …
    corecore