352 research outputs found

    Optoelectronics with electrically tunable PN diodes in a monolayer dichalcogenide

    Full text link
    One of the most fundamental devices for electronics and optoelectronics is the PN junction, which provides the functional element of diodes, bipolar transistors, photodetectors, LEDs, and solar cells, among many other devices. In conventional PN junctions, the adjacent p- and n-type regions of a semiconductor are formed by chemical doping. Materials with ambipolar conductance, however, allow for PN junctions to be configured and modified by electrostatic gating. This electrical control enables a single device to have multiple functionalities. Here we report ambipolar monolayer WSe2 devices in which two local gates are used to define a PN junction exclusively within the sheet of WSe2. With these electrically tunable PN junctions, we demonstrate both PN and NP diodes with ideality factors better than 2. Under excitation with light, the diodes show photodetection responsivity of 210 mA/W and photovoltaic power generation with a peak external quantum efficiency of 0.2%, promising numbers for a nearly transparent monolayer sheet in a lateral device geometry. Finally, we demonstrate a light-emitting diode based on monolayer WSe2. These devices provide a fundamental building block for ubiquitous, ultra-thin, flexible, and nearly transparent optoelectronic and electronic applications based on ambipolar dichalcogenide materials.Comment: 14 pages, 4 figure

    Ultrasonic Nondestructive Evaluation Using Laser Transducers

    Get PDF
    A program is described which employs lasers for ultrasonic NDE. A high-power laser is used to generate a brief sound pulse in the test specimen. A second low-power laser then measures the response of the specimen to that sound pulse. The response of the specimen is measured by a “Laser Vibrometer.” This is a novel type of heterodyne interferometer which focuses a Helium-Neon laser beam onto the surface of the specimen and measures its displacement. Displacements as small as 2×10-12 meters on a 0.15 sec averaging time can be detected and also displacements of 1.5×l0-9 meters on a 10-MHz bandwidth. The Laser Vibrometer has a well defined frequency response and does not introduce distortion. The sound generating laser is either a pulsed carbon dioxide TEA laser or a YAG laser. The peak power exceeds 10 M watt. Two mechanisms for generating the sound are discussed. The thermoelastic mechanism relies on the thermal expansion of the surface, causing it to move. The reaction to this causes a pressure pulse in the specimen. Another mechanism allows a small amount of the surface to be ablated and the reaction to this causes a substantial pressure pulse in the specimen. Both laser beams can be scanned over the surface of the specimen by a microprocessor controlled mirror. The microprocessor generates a raster scan of arbitrary size, number of lines, step size and speed. Eventually this technique will allow the inspection of complex specimens without direct contact. This will eliminate the tedium and contact reliability problems associated with conventional piezo-ceramic NDE

    Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control

    Get PDF
    The high-volume synthesis of two-dimensional (2D) materials in the form of platelets is desirable for various applications. While water is considered an ideal dispersion medium, due to its abundance and low cost, the hydrophobicity of platelet surfaces has prohibited its widespread use. Here we exfoliate 2D materials directly in pure water without using any chemicals or surfactants. In order to exfoliate and disperse the materials in water, we elevate the temperature of the sonication bath, and introduce energy via the dissipation of sonic waves. Storage stability greater than one month is achieved through the maintenance of high temperatures, and through atomic and molecular level simulations, we further discover that good solubility in water is maintained due to the presence of platelet surface charges as a result of edge functionalization or intrinsic polarity. Finally, we demonstrate inkjet printing on hard and flexible substrates as a potential application of water-dispersed 2D materials.close1

    Entanglement of single-photons and chiral phonons in atomically thin WSe2_2

    Full text link
    Quantum entanglement is a fundamental phenomenon which, on the one hand, reveals deep connections between quantum mechanics, gravity and the space-time; on the other hand, has practical applications as a key resource in quantum information processing. While it is routinely achieved in photon-atom ensembles, entanglement involving the solid-state or macroscopic objects remains challenging albeit promising for both fundamental physics and technological applications. Here, we report entanglement between collective, chiral vibrations in two-dimensional (2D) WSe2_2 host --- chiral phonons (CPs) --- and single-photons emitted from quantum dots (QDs) present in it. CPs which carry angular momentum were recently observed in WSe2_2 and are a distinguishing feature of the underlying honeycomb lattice. The entanglement results from a "which-way" scattering process, involving an optical excitation in a QD and doubly-degenerate CPs, which takes place via two indistinguishable paths. Our unveiling of entanglement involving a macroscopic, collective excitation together with strong interaction between CPs and QDs in 2D materials opens up ways for phonon-driven entanglement of QDs and engineering chiral or non-reciprocal interactions at the single-photon level

    On-chip waveguide coupling of a layered semiconductor single photon source

    Get PDF
    Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si3N4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si3N4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology

    Single-photon emitters in GaSe

    Get PDF
    Single-photon sources are important building blocks for quantum information technology. Emitters based on solid-state systems provide a viable route to integration in photonic devices. Here, we report on single-photon emitters in the layered semiconductor GaSe. We identify the exciton and biexciton transition of the quantum emitters with power-dependent photoluminescence and photon statistics measurements. We find evidence that the localization of the excitons is related to deformations of the GaSe crystal, caused by nanoscale selenium inclusions, which are incorporated in the crystal. These deformations give rise to local strain fields, which induce confinement potentials for the excitons. This mechanism lights the way for the controlled positioning of single-photon emitters in GaSe on the nanoscale

    Internally coupled ears in living mammals.

    Get PDF
    It is generally held that the right and left middle ears of mammals are acoustically isolated from each other, such that mammals must rely on neural computation to derive sound localisation cues. There are, however, some unusual species in which the middle ear cavities intercommunicate, in which case each ear might be able to act as a pressure-difference receiver. This could improve sound localisation at lower frequencies. The platypus Ornithorhynchus is apparently unique among mammals in that its tympanic cavities are widely open to the pharynx, a morphology resembling that of some non-mammalian tetrapods. The right and left middle ear cavities of certain talpid and golden moles are connected through air passages within the basicranium; one experimental study on Talpa has shown that the middle ears are indeed acoustically coupled by these means. Having a basisphenoid component to the middle ear cavity walls could be an important prerequisite for the development of this form of interaural communication. Little is known about the hearing abilities of platypus, talpid and golden moles, but their audition may well be limited to relatively low frequencies. If so, these mammals could, in principle, benefit from the sound localisation cues available to them through internally coupled ears. Whether or not they actually do remains to be established experimentally.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00422-015-0675-

    Characterization of the second- and third-harmonic optical susceptibilities of atomically thin tungsten diselenide

    Get PDF
    Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-28374-1We report the first detailed characterization of the sheet third-harmonic optical susceptibility, χ(3)s, of tungsten diselenide (WSe2). With a home-built multiphoton microscope setup developed to study harmonics generation, we map the second and third-harmonic intensities as a function of position in the sample, pump power and polarization angle, for single- and few-layers flakes of WSe2. We register a value of |χ(3)s| ≈ 0.9 × 10-28 m3 V-2 at a fundamental excitation frequency of ℏω = 0.8 eV, which is comparable in magnitude to the third-harmonic susceptibility of other group-VI transition metal dichalcogenides. The simultaneously recorded sheet second-harmonic susceptibility is found to be |χ(2)s| ≈ 0.7 × 10-19 m2 V-1 in very good agreement on the order of magnitude with recent reports for WSe2, which asserts the robustness of our values for |χ(3)s|.Y.W.H. acknowledges scholarship support from NGS. G.E. acknowledges financial support from National Research Foundation of Singapore (NRF Research Fellowship NRF-NRFF2011-02 and medium-sized centre programme) and Ministry of Education of Singapore (AcRF Tier 2 MOE2015-T2-2-123). V. M. P. acknowledges fnancial support from Ministry of Education of Singapore (FRC AcRF Tier 1 R-144-000-386-114). J.C.V.G. acknowledges fnancial support from CA2DM through National Research Foundation of Singapore (NRF-CRP Grant No. R-144-000-295-281)

    Why all the fuss about 2D semiconductors?

    Full text link
    Graphene is no longer alone; a family of atomically thin 2D semiconductors has emerged. Optoelectronics and photonics applications are in their experimental infancy but the future holds much promise.Comment: Commentary article, 1 figure, 1 tabl
    corecore