105 research outputs found

    The relationship between chronic type III acromioclavicular joint dislocation and cervical spine pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was aimed at evaluating whether or not patients with chronic type III acromioclavicular dislocation develop cervical spine pain and degenerative changes more frequently than normal subjects.</p> <p>Methods</p> <p>The cervical spine of 34 patients with chronic type III AC dislocation was radiographically evaluated. Osteophytosis presence was registered and the narrowing of the intervertebral disc and cervical lordosis were evaluated. Subjective cervical symptoms were investigated using the Northwick Park Neck Pain Questionnaire (NPQ). One-hundred healthy volunteers were recruited as a control group.</p> <p>Results</p> <p>The rate and distribution of osteophytosis and narrowed intervertebral disc were similar in both of the groups. Patients with chronic AC dislocation had a lower value of cervical lordosis. NPQ score was 17.3% in patients with AC separation (100% = the worst result) and 2.2% in the control group (p < 0.05). An inverse significant nonparametric correlation was found between the NPQ value and the lordosis degree in the AC dislocation group (p = 0.001) wheras results were not correlated (p = 0.27) in the control group.</p> <p>Conclusions</p> <p>Our study shows that chronic type III AC dislocation does not interfere with osteophytes formation or intervertebral disc narrowing, but that it may predispose cervical hypolordosis. The higher average NPQ values were observed in patients with chronic AC dislocation, especially in those that developed cervical hypolordosis.</p

    Clinical and radiological outcome of conservative vs. surgical treatment of atraumatic degenerative rotator cuff rupture: design of a randomized controlled trial

    Get PDF
    Background: Subacromial impingement syndrome is a frequently observed disorder in orthopedic practice. Lasting symptoms and impairment may occur when a subsequent atraumatic rotator cuff rupture is also present. However, degenerative ruptures of the rotator cuff can also be observed in asymptomatic elderly individuals. Treatment of these symptomatic degenerative ruptures may be conservative or surgical. Acceptable results are reported for both treatment modalities. No evidence-based level-1 studies have been conducted so far to compare these treatment modalities. The objective of this study is to determine whether there is a difference in outcome between surgical reconstruction and conservative treatment of a degenerative atraumatic rotator cuff tendon rupture. Methods/Design: A randomized controlled trial will be conducted. Patients aged between 45 and 75 with a symptomatic atraumatic rotator cuff rupture as diagnosed by MRI will be included. Exclusion criteria are traumatic rotator cuff rupture, frozen shoulder and diabetes mellitus. Patients will be randomized into two groups. Conservative treatment includes physical therapy according to a standardized protocol, NSAIDs and, if indicated, subacromial infiltration with a local anesthetic and corticosteroids. Surgical reconstruction is performed under general anesthesia in combination with an interscalenus plexus block. An acromioplasty with reconstruction of the rotator cuff tendon is performed, as described by Rockwood et al. Measurements take place preoperatively and 6 weeks, 3 months, 6 months and 1 year postoperatively. The primary outcome measure is the Constant score. Secondary measures include both disease-specific and generic outcome measures, and an economic evaluation. Additionally, one year after inclusion a second MRI will be taken of all patients in order to determine whether extent and localization of the rupture as well as the amount of fatty degeneration are prognostic factors. Discussion: Both surgical as conservative treatment of a symptomatic atraumatic rotator cuff tendon rupture is used in current practice. There is a lack of level-1 studies comparing surgical vs. conservative treatment. This randomized controlled trial has been designed to determine whether the surgical treatment of a degenerative atraumatic rotator cuff tendon rupture may lead to a better functional and radiological outcome than conservative treatment after one year of follow-up

    Stretching positions for the coracohumeral ligament: Strain measurement during passive motion using fresh/frozen cadaver shoulders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Contracture of the coracohumeral ligament is reported to restrict external rotation of the shoulder with arm at the side and restrict posterior-inferior shift of the humeral head. The contracture is supposed to restrict range of motion of the glenohumeral joint.</p> <p>Methods</p> <p>To obtain stretching position of the coracohumeral ligament, strain on the ligament was measured at the superficial fibers of the ligament using 9 fresh/frozen cadaver shoulders. By sequential measurement using a strain gauge, the ligament strain was measured from reference length (L0). Shoulder positions were determined using a 3 Space Tracker System. Through a combination of previously reported coracohumeral stretching positions and those observed in preliminary measurement, ligament strain were measured by passive external rotation from 10° internal rotation, by adding each 10° external rotation, to maximal external rotation.</p> <p>Results</p> <p>Stretching positions in which significantly larger strain were obtained compared to the L0 values were 0° elevation in scapula plane with 40°, 50° and maximum external rotation (5.68%, 7.2%, 7.87%), 30° extension with 50°, maximum external rotation (4.20%, 4.79%), and 30° extension + adduction with 30°, 40°, 50° and maximum external rotation (4.09%, 4.67%, 4.78%, 5.05%)(P < 0.05). No positive strain on the coracohumeral ligament was observed for the previously reported stretching positions; ie, 90° abduction with external rotation or flexion with external rotation.</p> <p>Conclusions</p> <p>Significant strain of the coracohumeral ligament will be achieved by passive external rotation at lower shoulder elevations, extension, and extension with adduction.</p

    Fractures of the Forearm in Children

    No full text
    • …
    corecore