162 research outputs found

    Molecular dynamics study of dislocation nucleation from a crack tip

    Get PDF
    We have performed a systematic molecular dynamics study of the competition between crack growth and dislocation emission from a crack tip. Two types of boundary conditions are adopted: either planar extension or boundary displacements according to the anisotropic mode-I asymptotic continuum solution. The effects of temperature, loading rate, crystal orientation, sharpness of the crack tip, atomic potential, and system size are investigated. Depending on the crystal orientation, dislocation nucleation can be driven either by the strain or by concerted fluctuations at the crack tip. In the latter case, crystal orientation and temperature have the largest influence on the process of dislocation nucleation

    Breaking the silence of the 500-year-old smiling garden of everlasting flowers: The En Tibi book herbarium

    Get PDF
    We reveal the enigmatic origin of one of the earliest surviving botanical collections. The 16th-century Italian En Tibi herbarium is a large, luxurious book with c. 500 dried plants, made in the Renaissance scholarly circles that developed botany as a distinct discipline. Its Latin inscription, translated as “Here for you a smiling garden of everlasting flowers”, suggests that this herbarium was a gift for a patron of the emerging botanical science. We follow an integrative approach that includes a botanical similarity estimation of the En Tibi with contemporary herbaria (Aldrovandi, Cesalpino, “Cibo”, Merini, Estense) and analysis of the book’s watermark, paper, binding, handwriting, Latin inscription and the morphology and DNA of hairs mounted under specimens. Rejecting the previous origin hypothesis (Ferrara, 1542–1544), we show that the En Tibi was made in Bologna around 1558. We attribute the En Tibi herbarium to Francesco Petrollini, a neglected 16th-century botanist, to whom also belongs, as clarified herein, the controversial “Erbario Cibo” kept in Rome. The En Tibi was probably a work on commission for Petrollini, who provided the plant material for the book. Other people were apparently involved in the compilation and offering of this precious gift to a yet unknown person, possibly the Habsburg Emperor Ferdinand I. The En Tibi herbarium is a Renaissance masterpiece of art and science, representing the quest for truth in herbal medicine and botany. Our multidisciplinary approach can serve as a guideline for deciphering other anonymous herbaria, kept safely “hidden” in treasure rooms of universities, libraries and museums

    A Current Induced Transition in atomic-sized contacts of metallic Alloys

    Get PDF
    We have measured conductance histograms of atomic point contacts made from the noble-transition metal alloys CuNi, AgPd, and AuPt for a concentration ratio of 1:1. For all alloys these histograms at low bias voltage (below 300 mV) resemble those of the noble metals whereas at high bias (above 300 mV) they resemble those of the transition metals. We interpret this effect as a change in the composition of the point contact with bias voltage. We discuss possible explanations in terms of electromigration and differential diffusion induced by current heating.Comment: 5 pages, 6 figure

    Friction of atomically stepped surfaces

    Full text link

    Field of inserted charges during Scanning Electron Microscopy of non-conducting samples

    Get PDF
    Three different approaches to calculating the electric potential in an inhomogeneous dielectric next to vacuum due to a charge distribution built up by the electron beam are investigated. An analytical solution for the electric potential cannot be found by means of the image charge method or Fourier analysis, both of which do work for a homogenous dielectric with a planar interface to vacuum. A Born approximation gives a good approach to the real electric potential in a homogenous dielectric up to a relative dielectric constant of 5. With this knowledge the electric potential of an inhomogenous dielectric is calculated. Also the electric field is calculated by means of a particle-mesh method. Some inhomogeneous dielectric configurations are calculated and their bound charges are studied. Such a method can yield accurate calculations of the electric potential and can give quantitative insight in the charging process. A capacitor model is described to estimate the potential due to the charge build up. It describes the potential build up in the first microseconds of the charging. Thereafter, it seems that more processes have to be taken into account to describe the potential well. This potential can further be used in a macroscopic approach to the collective motion of the electrons described by the Boltzmann transport equations or a derived density model, which can be a feasible alternative approximation to the more commonly used Monte-Carlo simulation of individual trajectories

    Local structure study of In_xGa_(1-x)As semiconductor alloys using High Energy Synchrotron X-ray Diffraction

    Full text link
    Nearest and higher neighbor distances as well as bond length distributions (static and thermal) of the In_xGa_(1-x)As (0<x<1) semiconductor alloys have been obtained from high real-space resolution atomic pair distribution functions (PDFs). Using this structural information, we modeled the local atomic displacements in In_xGa_(1-x)As alloys. From a supercell model based on the Kirkwood potential, we obtained 3-D As and (In,Ga) ensemble averaged probability distributions. This clearly shows that As atom displacements are highly directional and can be represented as a combination of and displacements. Examination of the Kirkwood model indicates that the standard deviation (sigma) of the static disorder on the (In,Ga) sublattice is around 60% of the value on the As sublattice and the (In,Ga) atomic displacements are much more isotropic than those on the As sublattice. The single crystal diffuse scattering calculated from the Kirkwood model shows that atomic displacements are most strongly correlated along directions.Comment: 10 pages, 12 figure

    Ising Universality in Three Dimensions: A Monte Carlo Study

    Full text link
    We investigate three Ising models on the simple cubic lattice by means of Monte Carlo methods and finite-size scaling. These models are the spin-1/2 Ising model with nearest-neighbor interactions, a spin-1/2 model with nearest-neighbor and third-neighbor interactions, and a spin-1 model with nearest-neighbor interactions. The results are in accurate agreement with the hypothesis of universality. Analysis of the finite-size scaling behavior reveals corrections beyond those caused by the leading irrelevant scaling field. We find that the correction-to-scaling amplitudes are strongly dependent on the introduction of further-neighbor interactions or a third spin state. In a spin-1 Ising model, these corrections appear to be very small. This is very helpful for the determination of the universal constants of the Ising model. The renormalization exponents of the Ising model are determined as y_t = 1.587 (2), y_h = 2.4815 (15) and y_i = -0.82 (6). The universal ratio Q = ^2/ is equal to 0.6233 (4) for periodic systems with cubic symmetry. The critical point of the nearest-neighbor spin-1/2 model is K_c=0.2216546 (10).Comment: 25 pages, uuencoded compressed PostScript file (to appear in Journal of Physics A
    • …
    corecore