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1. Abstract 
Three different approaches to calculating the electric potential in an inhomogeneous dielec-
tric next to vacuum due to a charge distribution built up by the electron beam are investiga-
ted. An analytical solution for the electric potential cannot be found by means of the image 
charge method or Fourier analysis, both of which do work for a homogenous dielectric with 
a planar interface to vacuum. A Born approximation gives a good approach to the real elec-
tric potential in a homogenous dielectric up to a relative dielectric constant of 5. With this 
knowledge the electric potential of an inhomogenous dielectric is calculated. Also the electric 
field is calculated by means of a particle-mesh method. Some inhomogeneous dielectric con-
figurations are calculated and their bound charges are studied. Such a method can yield 
accurate calculations of the electric potential and can give quantitative insight in the charging 
process. 

A capacitor model is described to estimate the potential due to the charge build up. It des-
cribes the potential build up in the first microseconds of the charging. Thereafter, it seems 
that more processes have to be taken into account to describe the potential well. This poten-
tial can further be used in a macroscopic approach to the collective motion of the electrons 
described by the Boltzmann transport equations or a derived density model, which can be a 
feasible alternative approximation to the more commonly used Monte-Carlo simulation of 
individual trajectories.  

2. Company profile 
FEI Electron Optics BV, part of FEI Company, develops, produces and sells tools for nano-
technology, focusing on electron microscopy and focused ion beam equipment. Main mar-
kets are research institutes and industries in the areas of nano-technology, nano-electronics 
and nano-biology. Products include TEMs, scanning electron microscopes (SEMs) and equip-
ment with both a FIB and a SEM column (DualBeam). Annual turnover of the company is 
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around 700M$. Strategic growth areas include the Life Science market, and soft-materials 
research. 

3. Problem description 
In scanning electron microscopy, a primary electron beam is scanning the surface of the sam-
ple of interest, using landing energies ranging from 50eV to 30 keV. In response, the sample 
releases secondary electrons (SEs) and some of the primary electrons are also scattered back 
(BSEs). At FEI there is an increasing focus on modeling the beam sample interaction, because 
increased understanding of the images created by the electron microscope is needed to ob-
tain more, reliable information from samples which are often difficult to image. For calcu-
lating amounts of SEs and BSEs a sophisticated Monte Carlo program is used. This simula-
tion works well, but difficulties arise when parts of a sample are non-conductive, like in 
polymers, solar cells or biological samples. Tracking all the holes and electrons that are gene-
rated and remain in existence for a significant time makes the calculation of non-conductive 
samples excessively time consuming. 

For this reason we are also looking at different, more macroscopic, semi-analytical models. In 
this model we need expressions for the field of charged spheres. For the field of a charged 
sphere in an otherwise uniform space of infinite dimensions the expressions are known and 
simple, matters get complicated near material boundaries.  

In one case, the uniform space is closed at one side by an interface characterized by a change 
in electrical permeability (εr ) (In an extreme case, this interface can be regarded as a conduc-
tive layer). Here we can still find a reasonably simple expression, via the introduction of a so-
called 'mirror charge'. So far, it is relatively easy. This is well described in for instance: 
J.D. Jackson,' Classical Electrodynamics, second edition', ISBN 0-471-43132-x, section 4.4 
(1975). 

non-conductive area 

interface 

charged sphere, whose 
field is to be calculted in 
the non-conductive area. 

mirror charge, 
with opposite sign 

 
Figure 3.1 Calculating the field of a charged sphere, via the concept of a mirror charge. 

The situation becomes more difficult when one also has to deal with interfaces in the hori-
zontal direction, but that is just where the samples get interesting. Then one has to deal with 
many more mirror charges, as the mirror charges themselves also get mirrored again, as 
shown in Figure 3.2. This leads to an, in principle unlimited, series of charges. Most likely, 
this series will converge, but can it also be expressed in a new and simple analytical expres-
sion that can be evaluated without consuming too much computation time? 
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non-conductive area 

upper interface 

charged sphere, whose field 
is to be calculted in the non-
conductive area. 

mirror charge 1 

mirror charge 2 

mirror charge 3 = mirror charge 2, 
mirrored at upper conductive layer 

mirror charge 4 = mirror charge 1, 
mirrored at lower conductive layer 

lower interface 

mirrored mirror charges 

mirrored mirror charges 

mirrored original charge 
horizontal-transition 
interface in the sample 

 
Figure 3.2 Calculating the field of a charged sphere, in case of two parallel horizontal inter-

faces and a third, perpendicular, interface, via the concept of a mirror charges. 
Characteristic for the problem is that the mirror charges themselves also get mir-
rored again. 

In conclusion, having easy to use semi-analytical expressions for these cases would be of 
great help. 

4. Problem solving strategy 
The problem is split up into two parts. In the first part (chapter 5) we try to calculate the 
electric potential for an inhomogenous dielectric. In the other part (chapter 6) we concentrate 
on the influence of the electric field on the diffusion of the electrons in the dielectric and their 
influence on the electric potential in the dielectric. 

For the calculation of the electric potential three different approaches are considered. The 
first one relies on the Born approximation where the potential generated by the bound char-
ges is considered as a disturbance to the system consisting of the free charges originating 
from the electron beam in free space. After that the particle-mesh method is considered as a 
possibility to calculate the electric field in an accurate and fast way. Finally analytical expan-
sion methods are explored. 

In chapter 6 we look at two methods to investigate the interaction of the electrons with the 
potential in the dielectric and their drift and diffusion under influence of this time-varying 
potential as an alternative to the Monte-Carlo simulations. First of all this is dealt with in a 
so-called capacitor model. The idea behind this approach is to look at the charging process as 
a capacitor. In this way quite a simple expression of the potential can be calculated, which 
can also be used in the macroscopic approach of chapter 6.2. In this approach the collective 
motion of the electrons is described by the Boltzmann equation which would provide an 
approximation towards understanding the behavior of the electrons which complements the 
computationally intensive results obtained by the Monte-Carlo simulations. Another alter-
native would be a density or hybrid approximation for the electron dynamics. 

5. Calculation of the electric potential  
This chapter focuses on the calculation of the electric potential caused by the charge imple-
mented by the electron beam and the induced charge due to these electrons in the dielectrics. 
First the Born approximation is considered in paragraph 5.1 and compared with exact results 
of the potential of a known configuration. After that, the method is applied to a more com-
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plex configuration with different dielectric constant values. In paragraph 5.2 the concept of 
the particle-mesh method is explained after which the electric potential of a few configu-
rations is calculated and discussed. At last, in paragraph 5.3 an exact analytical solution for 
the electric potential is searched for by means of a Fourier analysis.  

5.1 The Born approximation 
Assuming that the dielectric has a linear response to the electric field, the Poisson equation 
can then be written as: 

 . 5.1.1 

Here ρf is the distribution of charges in the specimen, both the trapped primary charges and 
the charges induced by the beam. By subtracting  from both sides we get after some re-
arrangements:  

 ,  

   

 , 5.1.2 

where . 

Then we split the potential into two parts; one caused by the 'free charge', which is the same 
charge distribution as above but taken in vacuum, and one caused by the 'bound charge', 
which is the remaining correction term due to the dielectric. That is: 

 , 5.1.3 

and 

 . 5.1.4 

Comparing this expression with the equations written above, we can write the potential 
caused by the bound charge as: 

  5.1.5 

We know how to solve the potential for the free charge as that is the charge that comes from 
the electron beam in a homogenous medium. Formally, we can solve the potential for the 
bound charge in exactly the same way:  

 . 5.1.6 

In the Born approximation it is assumed that the potential caused by the bound charge is 
small so that the potential in the integral can be replaced by Vfree. Then everything in the in-
tegral is known and the potential of the bound charge can be estimated in this way. If the 
estimation is not accurate enough one can substitute a new potential in the integral of 
equation 5.1.6: V=Vfree+Vbound where Vbound is the potential calculated from substituting Vfree in 
the integral of equation 5.1.6. This can be continued till the series is converging. 

Remark: It might be worthwhile to reverse the procedure, namely to calculate the unper-
turbed solution in the dielectric rather than in the vacuum and to take the vacuum as a per-
turbation, but this has not been tried in the course of the week. 

- 20 - 
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5.1.1 Comparison of different dielectric values 
To evaluate the usefulness of the Born approximation, we first focus on one single interface 
as depicted in Figure 1. because for this configuration exact solutions already exist. This 
makes it easier to compare and evaluate its validity. 

z 
 

ε0 

x 
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Figure 5.1 The used configuration to investigate the usefulness of the Born approximation  

A point charge is set in the dielectric with permittivity ε1 at coordinates (0, 0, -1) (the white 
point in Figure 5.1). Here the origin is taken at the midpoint of the configuration. The permi-
vitities are taken relative to the vacuum. With Mathematica the electric potential is calculated 
for the exact solution obtained through the image charge method, for the electric potential 
with the point charge in free space and for the electric potential calculated by means of the 
Born approximation. By plotting the potential in vacuum it is seen that the potential is 
almost zero at the points -5 and 5 in all directions. Integrating in a larger domain is only 
noticeable in the third decimal of the value of the potential on a certain place. Therefore the 
integration is from -5 till 5 in all directions. In Figure 5.2 two plots are shown in which we 
plot the potential as a function of the z coordinate following the line (1,0,z). The left plot cor-
responds to a permittivity ε1 = 1.5 (where here and elsewhere we take ε0 = 1), while the right 
plot corresponds to ε1 = 5. The top (dashed) line shows the exact solution, the middle (solid) 
line the result of the Born approximation, and the bottom (dotted) line the zeroth order 
result, in which the dielectric boundary is neglected. We see that for ε1 = 1.5 it is a very good 
approximation to the exact result. For higher value ε1 = 5, the difference with the exact solu-
tion increases, but still the Born approximation gives a much better result than the zeroth 
order curve.  

 

 

 

 

 

 

 

 

 

Figure 5.2 The potential in the dielectric setup Figure 5.1 as a function of the z coordinate fol-
lowing the line (1,0,z). The left plot corresponds to a permittivity ε1 = 1.5, the right 
plot to ε1 = 5. The top (dashed) line shows the exact solution, the middle (solid) line 
the result of the Born approximation, and the bottom (dotted) line the zeroth order 
result, in which the dielectric boundary is neglected. 

ε1 
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Next, we consider the dielectric setup shown in Figure 5.3. An extra dielectric interface is 
added in the lower region and the point charge is located at (0,0,-1) to the left of it.  

 

ε0 

ε1 ε2 

x 

z 
 

 

 

 

 

 

Figure 5.3 The dielectric setup with an extra dielectric interface.  

In Figure 5.4 two plots are shown in which we plot the potential as a function of the z coordi-
nate following the line (0,0,z). The left plot corresponds to a permittivity ε1 = 1.5 and ε2 = 2, 
while the right plot corresponds to a ε1 = 1.5 and ε2 = 6.5. The bottom solid line shows the 
result of the Born approximation for this system. The top (dotted) line shows the potential of 
the dielectric setup of Figure 5.1, with ε1 = ε2 = 1.5 for comparison. We see that the potential is 
decreasing for a higher ε2 value, which is caused by the induced negative charge at the extra 
interface between regions 1 and 2. Thus, we see that also for this system, the results of the 
Born approximation are very reasonable. 

 
Figure 5.4 The potential as a function of the z coordinate following the line (1,0,z). The left 

plot corresponds to a permittivity of ε1=1.5 and ε2=2, while the right plot corre-
sponds to ε1=1.5 and ε2=6.5. The bottom solid line shows the result of the Born 
approximation for this system. The top (dotted) line shows the potential of the 
dielectric setup of figure 5.1, with ε1= ε2=1.5 for comparison. 

5.2 Numerical methods for the computation of the electric field 
There are many numerical methods to obtain the electric field (or equivalently, the electric 
potential) of a given charge configuration. If the charges are represented as particles, the 
most direct methods sum the contributions of the individual particles to obtain the electric 
field at some point. It should be clear that such an approach becomes very expensive when 
the number of particles increases, and they should mostly be used when close range inter-
actions need to be resolved accurately.  

An alternative to the direct methods is to use a particle-mesh or particle-in-cell (PIC) method. 
With such a method one first maps the particles to charge densities on a mesh, after which 
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the electric potential is computed (given some boundary condition) and from that the electric 
field. Particles can still be simulated individually, but they now move in a field computed 
from the charge density. Interactions over a distance comparable to the mesh spacing might 
not be resolved accurately in this way, but for many applications these do not contribute 
significantly to the overall behavior. If close range interactions are important one can work 
with a P3M method, which combines the particle-particle interaction at close range with a 
particle-mesh method.  

5.2.1 Particle-mesh method 
To simulate the charging of samples due to the scanning electron beam, we suggest a parti-
cle-mesh method, as the number of charged particles in the samples will typically be quite 
large and close range interactions seem not to be crucial for the charging process, except for 
detailed trajectories of single particles. Depending on the required accuracy one first has to 
choose a type of mesh. Then the Poisson equation can be solved on this mesh with some 
boundary condition, and the electric field is obtained by taking the numerical gradient. For a 
practical simulation it would probably be best to recompute the electric field only after N 
electrons have landed from the beam, where N is chosen such that the beam deposits a sig-
nificant amount of charge in this interval. 

There are many algorithms available to compute the potential, and the choice of algorithm 
typically depends on the type of mesh used and the boundary conditions, see for example 
chapter 6 of 'Computer Simulation Using Particles' by R.W. Hockney and J.W. Eastwood [1]. 
If the domain contains materials with different dielectric constants or has a non-rectangular 
geometry the so-called fast solvers (based on cyclic reduction and the fast Fourier transform) 
can usually not be used. Methods based on mesh relaxation are more flexible in this regard, 
as are finite element methods. When one wants to simulate the charging of the sample 
together with the beam interaction, performance is essential. We therefore suggest that a 
multigrid method with adaptive grid refinement and special treatment of the dielectric 
interfaces could be used, see for example Deng et al. [2]. They also describe a different 
method for the case where all the dielectrics are rectangular, which uses a fast solver on the 
rectangular subdomains and an iterative procedure to match the boundary conditions 
between the subdomains. 

Although there is a lot of literature on algorithms for solving the Poisson equation, there 
seem to be no codes available that fulfil all the requirements described above. The develop-
ment of such codes is far from trivial, and therefore we have developed a simple relaxation 
method during the week, to demonstrate the principles and also get some physical insight. 
We started out with successive over-relaxation on 2D and 3D Cartesian grids and a Dirichlet 
boundary condition. See Figure 5.5a for an example of the computed potential in 2D. It can 
clearly be seen that the positive charge induces a negative surface charge on the dielectric, 
see Figure 5.5b where we show the polarization charge for a different configuration. 

The change in dielectric constant cannot be more than about a order of magnitude, or else the 
iteration becomes unstable. We have also worked with a simple multigrid algorithm, in 
which we saw that the rate of convergence depends on the location of the dielectric boun-
dary. This illustrates that special treatment of the interfaces is required to have a fast and 
stable method. 
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 b) a) 
Figure 5.5 a) The potential due to a positive point charge in vacuum next to a dielectric (at 

the same location as the black dot in b)). The relative dielectric constants are shown 
in the top right. Clearly the positive charge induces a negative polarization charge 
on the dielectric interface, which significantly lowers the potential in a large part 
of the domain. The boundary was grounded in this calculation. b) The polarization 
charge density induced by a positive point charge (the black dot). It can be seen 
that the sign of the induced polarization charge depends on whether the dielectric 
constant increases or decreases along an interface. 

5.3 Analytical solution to Poisson equation 
One classical way to solve Poisson equation is to expand the potential by using a complete 
set of functions as a basis and finding the appropriate coefficients which satisfy the boundary 
conditions. We decided to use a continuous basis in the Cartesian representation and there-
fore we wrote the potential in three different parts like this: 

 ∫∫ −+=Ψ )()( )3(1)3(1
)(

)3(1 yx
zkykxki

yx kBkAeedkdk yx  5.3.1 

 ∫∫ −++Φ=Ψ )()( 22
)(

2 yx
zkykxki

yxp kBkAeedkdk yx  5.3.2 

where ΦP  is the potential of the point charge. Here the configuration and the coordinate 
axes are the same as in Figure 5.3 but the three dielectric regions are numbered 1, 2, 3 instead 
of 0, 1, 2. 

We have three boundaries and six boundary conditions, which are: 

 Ψ1(x > 0, y,z= 0) = Ψ3(x > 0, y,z= 0) 5.3.3 

 )0,,0()0,,0( 21 =<Ψ==<Ψ zyxzyx  5.3.4 

 ),,0(),,0( 32 zyxzyx =Ψ==Ψ  5.3.5 

 
ε1

∂Ψ1(x > 0, y,z+ )
∂z

+ ε3
∂Ψ3(x > 0, y,z− )

∂z
⎛
⎝⎜

⎞
⎠⎟ z=0

= 0
 

5.3.6 

 
ε1

∂Ψ1(x < 0, y, z+ )
∂z

+ ε2
∂Ψ2 (x < 0, y, z− )

∂z
⎛
⎝⎜

⎞
⎠⎟ z=0

− ε2
∂ΦP

∂z z=0 = 0
 

5.3.7 
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5.3.8 

by using the equations for the boundary between regions 2 and 3 we could derive this rela-
tion: 
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xxy  
5.3.9 
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5.3.10 

where  are related to the Fourier transformations of the Bessel function by: 1, ffo

 fo = dye− ikyy q
ε2

∫ Jo(kρ)
 5.3.11 

 
f1 = xo dye− ikyy q

ε2

kJ1(kρ)ekzo

ρ∫  5.3.12 

and  

 222 )( ooo zyyx +−+=ρ  5.3.13 

 22
yx kkk +=  5.3.14 

The next step is to use these relations in the boundaries between 1,2 and 1,3, but because at 
the boundary of 1,2 x is negative and in 1,3 it is positive, we cannot take the inverse Fourier 
transformation and also we could not eliminate  from the equation, so we could not 
solve the problem analytically .We also tried some other expansions by using an infinite and 
countable basis, but they also failed.  

11, BA

6. Potential development due to charging and electron 
motion in a dielectric 

This chapter deals with the development of the potential due to charging and the motion of 
the electrons in the dielectric itself. In the first paragraph a capacitor model is discussed 
which deals with the charge distribution as a spherical capacitor. Next, the collective motion 
of the electrons is discussed by means of a Boltzmann equation which has the potential to 
lead to an alternative method for calculating their distribution to the Monte Carlo simula-
tions usually encountered in literature. Another alternative would be a density model 
derived from moments of the Boltzmann equation.  

6.1 Capacitor model 
The energy of the primary beam influences the range of the electrons in the medium as fol-
lows: 

 
,

1
)(

65.1

⎟
⎠
⎞

⎜
⎝
⎛=

eV
EER PE

PE ρ
β  

6.1.1 

where, for silicon, β=0.76x10-9 kg/m2 and ρ=2330 kg/m3. The range for electrons with EPE=15 
keV in Si is therefore about 2.5 μm. 

- 25 - 



Proceedings Physics with Industry 2011 

The yield of the secondary electrons also depends on the primary beam energy as 

 
),1(

(
5.0)(

)(

)

λλ
ξ

δ
PEER

PE

PE
PE e

ER
EE

−

−=  6.1.2 

where ξ=90 [eV/escaped SE] and λ=2.7x10-9[m]. This is calculated to be 0.006 for the case of 
Si and an energy EPE=15 keV. The yield of the back-scattered electrons is a constant, η=0.2. 

6.1.1 Capacitor model for a single pixel 
At a fixed beam position, the positive charge is created mainly below the surface at about 17 
nm. The positive charge originates from the fact that the generated secondary electrons leave 
the sample. The primary electrons drift and diffuse into the sample over a mean distance R 
and tend to become deposited in a half circular shape at a distance R under the surface. The 
typical sample thickness d is 200 µm. This situation is schematized in the following Figure: 

PE 

 

Positive charge of δ-e 

 R~μm 
~200 μm 

Negative charge of (η-1)·e 

 

Grounded 
sample holder 

Figure 6.1 Sketch of the charge build up in a dielectric on a sample holder exposed to an elec-
tron beam due to the electrons originated from the beam.  

Since R is so much smaller than d, it is safe to say that all charge is deposited at a distance d 
from the sample holder, which is at ground potential. Even if the configuration look like a 
dipole, it is interesting to approximate the geometry as the charge has been deposited in a 
spherical shape. Under those circumstances the charged area (also called the interaction 
volume) can be seen as a spherical capacitor at a distance d from a grounded wall, at the 
bottom of the sample.  

The capacitance of a sphere with a radius r=R/2 is given by the following formula, where 
D=d/r [3] : 

 
∑

∞

= −+
−+

=
1

2

2

0 .
))1ln(sinh(

))1sinh(ln(4
n

rS DDn
DDrC εεπ

 
6.1.3 

The series converge well, if truncated after n=3, to F, for the dielectric con-
stant of silicon (εr= 11.9). 

15107.1 −⋅≈wC

The voltage in a capacitor follows this relation [3] 

 
 
V (t) =

Q(t)
C , 

6.1.4 
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where V is the voltage, C the capacitance and Q the charge. The time-dependent charge can 
be written as: [3] 

  Q(t) = I(1−η −δ)t, 6.1.5 

with I the intensity of the beam and t the dwell time. This charge Q is the net negative charge 
in the sample. The following Figure shows a plot of the voltage versus the dwell time, for the 
case of a spherical capacitor with a beam current of 1 nA. 

  
Figure 6.2 Voltage versus dwell time for a spherical capcacitor with a beam current of 1 nA 

calculated with the help of formulas 6.1.5 and 6.1.6 for the case of Si. The voltage is 
negative.  

This exercise can show that in a typical dwell time a potential of 5 V can build up in a typical 
measuring point (one pixel). This potential can influence the trajectory of secondary electrons 
of few eV energy. 

This voltage decays in time, similarly to a RC circuit. But in order to get the time constant 
τ=R*C, it is necessary to find an expression of the resistance, which is missing at the moment. 

6.1.2 Capacitor model for a line scan 
A typical SEM scan pattern is made up of 1000 by 1000 pixels. Every pixel is illuminated with 
for instance 1 nA beam current for 1 to 10 μs. In general, a pixel is influenced by the electric 
field of the previous illuminated ones. It is interesting to approximate a line scan as the char-
ge is deposited as a wire configuration. The capacitance of a wire with a length l=1 μm, put 
at a distance d=200 μm from the wall is given by [3] 

 

( )1ln
2

2

0

−+
=

DD
lC r

w

εεπ
 6.1.6 

and with this geometry it results in  F. 16100.1 −⋅≈wC

But in order to evaluate the potential, it is necessary to know the how fast the potential 
decays in each pixel with respect the scanning time. 

6.1.3 Yield vs. Energy 
The total yield of BSE and SE depends on the energy of the primary electron beam as in 
Figure 6.3. 
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Figure 6.3 Schematic graph of the sum of the back-scattered electrons (BSE) and the secon-

dary electrons (SE) as a function of the energy of the incident electrons on a sam-
ple. The vertical axis displays the total yield Y(BSE+SE) = η+δ.  

For a beam energy greater than E2, the sample accumulates a negative charge since the net 
yield is less than one. With time, the negative charge accumulated below the surface of the 
sample slows down the primary beam towards an energy E2. At this point, the yield equals 1, 
so there is not a net change of the charge in the sample. On the other end, with a primary 
beam energy smaller than E2 (but larger than the maximum of the function), the samples 
charge up positively, since for every landing electron, there is more than one electron leaving 
the sample per landing event. This positive potential tends to attract back the secondary 
electrons and they gradually do not leave the sample. The points with an energy E2 is a stable 
points.  

From SEM pictures, the charging process appears to stabilize after a certain time (a scan of 
few seconds at a MHz measuring rate per pixel), meaning that the net charge is not chan-
ging. From the results presented here, the potential increases with time. But this is not in 
contrast with the measurements, because in the experiments, even when the net charge 
seems to be constant, there is an ongoing change in charge distribution leading to internal 
electric  

6.2 Electron Transport – a possible alternative to Monte-Carlo simulations 
The Monte-Carlo method of simulating the dynamic charge distribution of electrons in a 
dielectric sample by tracing numerous trajectories is powerful and versatile but also compu-
tationally intensive. It is therefore interesting to look for possible alternatives to this 
approach. 

One strategy which suggests itself is a model based on the drift and diffusion of electrons in 
the medium. Instead of concentrating on the motion of individual particles, the collective 
behavior of all the particles can be modelled as the dynamic evolution of an out-of-equi-
librium system relaxing to its steady state. We start with a very high concentration of elec-
trons at the surface of the dielectric, which then spread through the bulk of the material to 
some final position and momentum distribution. In the primary beam, of course, all electrons 
start with a common high entrance velocity at their initial positions at the surface. 

Some questions immediately arise. For example, can the motion of such high energetic par-
ticles really be modelled as a Brownian diffusion process? And how would one describe in 
such a model the deceleration of the particles as they are slowed down by inelastic colli-
sions? 
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The dynamic evolution of an ensemble of particles towards equilibrium is described by the 
Boltzmann Transport equation: 
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where (∂f/∂t) is the particle distribution function, which depends on the velocity v, position 
r, and time t. (∂f/∂t)force is the rate of change of the external driving force, in this case an elec-
tric field, (∂f/∂t)diff is the rate of diffusion, and (∂f/∂t)coll is the collisional rate. 

From this general view of transport, the challenge is to find appropriate models based on the 
Boltzmann equation, specific to the distribution of charges in scanning electron microscopy. 
The strategy we propose is to divide the electron population which plays a role in the charge 
build-up process into two categories, based on their energies.  

Secondary electrons, or other electrons with energies less than 5 eV (that do not create addi-
tional free particles), can be well-described by the Boltzmann transport equation normally 
used for modeling, for example, the flow of electrons in silicon or other semi-conductor 
material. Analytical solutions as well as approximations have been demonstrated, which 
allow the calculation of parameters such as the electron energy distribution and electron drift 
velocities [4, 5]. The results from these models can be shown to compare favorably to Monte-
Carlo simulations [5]. 

Primary and back-scattered electrons with energies of greater than 100 eV require an addi-
tional approximation, in order to adequately describe the deceleration of these high-energy 
particles through inelastic scattering processes. The Continuous Slowing-Down Approxima-
tion (CSDA) allows the net distance an electron travels in various media to be estimated by 
assuming that the energy of the electron decreases at a constant rate. Materials for which the 
CSDA range is known include, for example, silicon and polystyrene [6].  

By combining the Bolzmann Transport Equation with CSDA, we come upon an electron 
transport model known as the Spencer-Lewis equation. This equation is used mainly in 
nuclear and particle physics, where it was important to understand, for example, the beha-
vior of a high-energy electron impacting on a silicon detector. Three-dimensional numerical 
solutions of this equation have been calculated for electrons in silicon in various geometries, 
where it is also claimed that good agreement with Monte-Carlo results have been achieved 
with this method and that it is significantly faster [7]. 

This investigation shows therefore that there are indeed precedents for an alternative 
approach, one which tries to understand the problem presented through an electron tran-
sport model. If it proves feasible on a practical level, such an approach may allow gains in 
computational time, as well as provide a deterministic calculation method which permits the 
change of one parameter while keeping every other characteristic of the system identical. For 
some applications these advantages could complement well with Monte-Carlo simulations. 

Finally, we should mention that other 'global' approaches besides the electron transport 
equation also exists, such as the Fokker-Planck equation, and even with the electron tran-
sport approach there are many different varients, for example self-consistency [8]. 

Another alternative lies in deriving an electron density approximation by averaging over 
moments of the Boltzmann equation. This might yield a better approximation of the colli-
sional processes and successive reaction products (like excitations and additional free parti-
cles) for the energetic particles than the CSDA. (This statement is certainly valid in a gas 
discharge and needs to be checked in a discharge in a dielectric.) Another approximation 
consists of treating the energetic particles with a Monte-Carlo approach and the low energy 
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electrons as densities in a so-called hybrid scheme. The methods mentioned in this para-
graph have been developed for collision dominated plasmas in gases. 

7. Discussion 
Both the Born approximation and the particle-mesh method are useful methods to calculate 
the electric potential in an inhomogenous dielectric. One can also go beyond the Born 
approximation where the calculated corrected potential is used as an input for computing 
the following higher order correction to the electric potential until the potential converges. 
However, one should remember that the convergence behaviour of such an iterative series is 
not checked when one starts from the potential of a homogenous dielectric. To be sure that 
the series is converging, the first guess of the potential should be reasonably good. This can 
be done by simulating different configurations to get a feeling for where the bound charges 
are located and therefore can help to make a first estimate of the potential of a more compli-
cated dielectric. These simulations can for example be done with the particle-mesh methods 
with which the computation of the electric field of the charging sample can be probably be 
done accurately and fast enough to provide some quantitative insight to the charging pro-
cess. Such a particle-mesh or particle-in-cell method can also be used directly if the particle 
nature of the electrons does not need to be accounted for. However, the development of such 
a code will take considerable time and could not be accomplished in the course of the week.  

An analytical method for point charges was considered as well, but we stated that an exact 
analytical solution for an electric potential in an inhomogenous dielectric next to vacuum 
cannot be found.  

The capacitor model can probably estimate the potential built up due to charging in the very 
beginning of the charging process. Although the continuous increase of the potential is not in 
contrast with the stabilization of the charging, it is most likely that other processes have to be 
taken into account after a few microseconds to explain the behavior of the charge build up in 
the dielectric that simplify by the separation of the positive and the negative charges. 
Electron transport models can be used as a complement to Monte-Carlo simulations, pro-
viding a global statistical view of the distribution of electrons as they move through the bulk 
of the dielectric. Precedents exist from solid-state, nuclear, particle and plasma physics, and 
these can be used as a basis for modeling the current problem, covering the behavior of elec-
trons as both low and high energies.  
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