202 research outputs found

    Graphics for uncertainty

    Get PDF
    Graphical methods such as colour shading and animation, which are widely available, can be very effective in communicating uncertainty. In particular, the idea of a ‘density strip’ provides a conceptually simple representation of a distribution and this is explored in a variety of settings, including a comparison of means, regression and models for contingency tables. Animation is also a very useful device for exploring uncertainty and this is explored particularly in the context of flexible models, expressed in curves and surfaces whose structure is of particular interest. Animation can further provide a helpful mechanism for exploring data in several dimensions. This is explored in the simple but very important setting of spatiotemporal data

    Presence of RD149 Deletions in M. tuberculosis Central Asian Strain1 Isolates Affect Growth and TNFα Induction in THP-1 Monocytes

    Get PDF
    Central Asian Strain 1 (CAS1) is the prevalent Mycobacterium tuberculosis genogroup in South Asia. CAS1 strains carry deletions in RD149 and RD152 regions. Significance of these deletions is as yet unknown. We compared CAS1 strains with RD149 and concurrent RD149-RD152 deletions with CAS1 strains without deletions and with the laboratory reference strain, M. tuberculosis H37Rv for growth and for induction of TNFα, IL6, CCL2 and IL10 in THP-1 cells. Growth of CAS1 strains with deletions was slower in broth (RD149; p = 0.024 and RD149-RD152; p = 0.025) than that of strains without deletions. CAS1 strains with RD149 deletion strains further showed reduced intracellular growth (p = 0.013) in THP-1 cells as compared with strains without deletions, and also as compared with H37Rv (p = 0.007) and with CAS1 RD149-RD152 deletion strains (p = 0.029). All CAS1 strains induced higher levels of TNFα and IL10 secretion in THP-1 cells than H37Rv. Additionally, CAS1 strains with RD149 deletions induced more TNFα secretion than those without deletions (p = 0.013). CAS1 RD149 deletion strains from extrapulmonary sources showed more rapid growth and induced lower levels of TNFα and IL6 secretion in THP-1 cells than isolates from pulmonary sources. This data suggests that presence of RD149 reduces growth and increases the induction of TNFα in host cells by CAS1 strains. Differences observed for extrapulmonary strains may indicate an adaptation which increases potential for dissemination and tropism outside the lung. Overall, we hypothesise that RD149 deletions generate genetic diversity within strains and impact interactions of CAS1 strains with host cells with important clinical consequences

    The Impact of Mouse Passaging of Mycobacterium tuberculosis Strains prior to Virulence Testing in the Mouse and Guinea Pig Aerosol Models

    Get PDF
    It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models.By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates.These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made

    Genome-Wide RNAi Screen in IFN-γ-Treated Human Macrophages Identifies Genes Mediating Resistance to the Intracellular Pathogen Francisella tularensis

    Get PDF
    Interferon-gamma (IFN-γ) inhibits intracellular replication of Francisella tularensis in human monocyte-derived macrophages (HMDM) and in mice, but the mechanisms of this protective effect are poorly characterized. We used genome-wide RNA interference (RNAi) screening in the human macrophage cell line THP-1 to identify genes that mediate the beneficial effects of IFN-γ on F. tularensis infection. A primary screen identified ∼200 replicated candidate genes. These were prioritized according to mRNA expression in IFN-γ-primed and F. tularensis-challenged macrophages. A panel of 20 top hits was further assessed by re-testing using individual shRNAs or siRNAs in THP-1 cells, HMDMs and primary human lung macrophages. Six of eight validated genes tested were also found to confer resistance to Listeria monocytogenes infection, suggesting a broadly shared host gene program for intracellular pathogens. The F. tularensis-validated hits included ‘druggable’ targets such as TNFRSF9, which encodes CD137. Treating HMDM with a blocking antibody to CD137 confirmed a beneficial role of CD137 in macrophage clearance of F. tularensis. These studies reveal a number of important mediators of IFN-γ activated host defense against intracellular pathogens, and implicate CD137 as a potential therapeutic target and regulator of macrophage interactions with Francisella tularensis

    Who Shares? Who Doesn't? Factors Associated with Openly Archiving Raw Research Data

    Get PDF
    Many initiatives encourage investigators to share their raw datasets in hopes of increasing research efficiency and quality. Despite these investments of time and money, we do not have a firm grasp of who openly shares raw research data, who doesn't, and which initiatives are correlated with high rates of data sharing. In this analysis I use bibliometric methods to identify patterns in the frequency with which investigators openly archive their raw gene expression microarray datasets after study publication

    Enhancement of endogenous neurogenesis in ephrin-B3 deficient mice after transient focal cerebral ischemia

    Get PDF
    Cerebral ischemia stimulates endogenous neurogenesis. However, the functional relevance of this phenomenon remains unclear because of poor survival and low neuronal differentiation rates of newborn cells. Therefore, further studies on mechanisms regulating neurogenesis under ischemic conditions are required, among which ephrin-ligands and ephrin-receptors (Eph) are an interesting target. Although Eph/ephrin proteins like ephrin-B3 are known to negatively regulate neurogenesis under physiological conditions, their role in cerebral ischemia is largely unknown. We therefore studied neurogenesis, brain injury and functional outcome in ephrin-B3−/− (knockout) and ephrin-B3+/+ (wild-type) mice submitted to cerebral ischemia. Induction of stroke resulted in enhanced cell proliferation and neuronal differentiation around the lesion site of ephrin-B3−/− compared to ephrin-B3+/+ mice. However, prominent post-ischemic neurogenesis in ephrin-B3−/− mice was accompanied by significantly increased ischemic injury and motor coordination deficits that persisted up to 4 weeks. Ischemic injury in ephrin-B3−/− mice was associated with a caspase-3-dependent activation of the signal transducer and activator of transcription 1 (STAT1). Whereas inhibition of caspase-3 had no effect on brain injury in ephrin-B3+/+ animals, infarct size in ephrin-B3−/− mice was strongly reduced, suggesting that aggravated brain injury in these animals might involve a caspase-3-dependent activation of STAT1. In conclusion, post-ischemic neurogenesis in ephrin-B3−/− mice is strongly enhanced, but fails to contribute to functional recovery because of caspase-3-mediated aggravation of ischemic injury in these animals. Our results suggest that ephrin-B3 might be an interesting target for overcoming some of the limitations of further cell-based therapies in stroke
    corecore