39 research outputs found

    Enhanced diagnostic yield in Meckel-Gruber and Joubert syndrome through exome sequencing supplemented with split-read mapping

    Get PDF
    Background The widespread adoption of high-throughput sequencing technologies by genetic diagnostic laboratories has enabled significant expansion of their testing portfolios. Rare autosomal recessive conditions have been a particular focus of many new services. Here we report a cohort of 26 patients referred for genetic analysis of Joubert (JBTS) and Meckel-Gruber (MKS) syndromes, two clinically and genetically heterogeneous neurodevelopmental conditions that define a phenotypic spectrum, with MKS at the severe end. Methods Exome sequencing was performed for all cases, using Agilent SureSelect v5 reagents and Illumina paired-end sequencing. For two cases medium-coverage (9×) whole genome sequencing was subsequently undertaken. Results Using a standard analysis pipeline for the detection of single nucleotide and small insertion or deletion variants, molecular diagnoses were confirmed in 12 cases (4 %). Seeking to determine whether our cohort harboured pathogenic copy number variants (CNV), in JBTS- or MKS-associated genes, targeted comparative read-depth analysis was performed using FishingCNV. These analyses identified a putative intragenic AHI1 deletion that included three exons spanning at least 3.4 kb and an intergenic MPP4 to TMEM237 deletion that included exons spanning at least 21.5 kb. Whole genome sequencing enabled confirmation of the deletion-containing alleles and precise characterisation of the mutation breakpoints at nucleotide resolution. These data were validated following development of PCR-based assays that could be subsequently used for “cascade” screening and/or prenatal diagnosis. Conclusions Our investigations expand the AHI1 and TMEM237 mutation spectrum and highlight the importance of performing CNV screening of disease-associated genes. We demonstrate a robust increasingly cost-effective CNV detection workflow that is applicable to all MKS/JBTS referrals

    Maps of Open Chromatin Guide the Functional Follow-Up of Genome-Wide Association Signals: Application to Hematological Traits

    Get PDF
    Turning genetic discoveries identified in genome-wide association (GWA) studies into biological mechanisms is an important challenge in human genetics. Many GWA signals map outside exons, suggesting that the associated variants may lie within regulatory regions. We applied the formaldehyde-assisted isolation of regulatory elements (FAIRE) method in a megakaryocytic and an erythroblastoid cell line to map active regulatory elements at known loci associated with hematological quantitative traits, coronary artery disease, and myocardial infarction. We showed that the two cell types exhibit distinct patterns of open chromatin and that cell-specific open chromatin can guide the finding of functional variants. We identified an open chromatin region at chromosome 7q22.3 in megakaryocytes but not erythroblasts, which harbors the common non-coding sequence variant rs342293 known to be associated with platelet volume and function. Resequencing of this open chromatin region in 643 individuals provided strong evidence that rs342293 is the only putative causative variant in this region. We demonstrated that the C- and G-alleles differentially bind the transcription factor EVI1 affecting PIK3CG gene expression in platelets and macrophages. A protein–protein interaction network including up- and down-regulated genes in Pik3cg knockout mice indicated that PIK3CG is associated with gene pathways with an established role in platelet membrane biogenesis and thrombus formation. Thus, rs342293 is the functional common variant at this locus; to the best of our knowledge this is the first such variant to be elucidated among the known platelet quantitative trait loci (QTLs). Our data suggested a molecular mechanism by which a non-coding GWA index SNP modulates platelet phenotype

    The dynamic cilium in human diseases

    Get PDF
    Cilia are specialized organelles protruding from the cell surface of almost all mammalian cells. They consist of a basal body, composed of two centrioles, and a protruding body, named the axoneme. Although the basic structure of all cilia is the same, numerous differences emerge in different cell types, suggesting diverse functions. In recent years many studies have elucidated the function of 9+0 primary cilia. The primary cilium acts as an antenna for the cell, and several important pathways such as Hedgehog, Wnt and planar cell polarity (PCP) are transduced through it. Many studies on animal models have revealed that during embryogenesis the primary cilium has an essential role in defining the correct patterning of the body. Cilia are composed of hundreds of proteins and the impairment or dysfunction of one protein alone can cause complete loss of cilia or the formation of abnormal cilia. Mutations in ciliary proteins cause ciliopathies which can affect many organs at different levels of severity and are characterized by a wide spectrum of phenotypes. Ciliary proteins can be mutated in more than one ciliopathy, suggesting an interaction between proteins. To date, little is known about the role of primary cilia in adult life and it is tempting to speculate about their role in the maintenance of adult organs. The state of the art in primary cilia studies reveals a very intricate role. Analysis of cilia-related pathways and of the different clinical phenotypes of ciliopathies helps to shed light on the function of these sophisticated organelles. The aim of this review is to evaluate the recent advances in cilia function and the molecular mechanisms at the basis of their activity

    Ciliopathies: an expanding disease spectrum

    Get PDF
    Ciliopathies comprise a group of disorders associated with genetic mutations encoding defective proteins, which result in either abnormal formation or function of cilia. As cilia are a component of almost all vertebrate cells, cilia dysfunction can manifest as a constellation of features that include characteristically, retinal degeneration, renal disease and cerebral anomalies. Additional manifestations include congenital fibrocystic diseases of the liver, diabetes, obesity and skeletal dysplasias. Ciliopathic features have been associated with mutations in over 40 genes to date. However, with over 1,000 polypeptides currently identified within the ciliary proteome, several other disorders associated with this constellation of clinical features will likely be ascribed to mutations in other ciliary genes. The mechanisms underlying many of the disease phenotypes associated with ciliary dysfunction have yet to be fully elucidated. Several elegant studies have crucially demonstrated the dynamic ciliary localisation of components of the Hedgehog and Wnt signalling pathways during signal transduction. Given the critical role of the cilium in transducing “outside-in” signals, it is not surprising therefore, that the disease phenotypes consequent to ciliary dysfunction are a manifestation of aberrant signal transduction. Further investigation is now needed to explore the developmental and physiological roles of aberrant signal transduction in the manifestation of ciliopathy phenotypes. Utilisation of conditional and inducible murine models to delete or overexpress individual ciliary genes in a spatiotemporal and organ/cell-specific manner should help clarify some of the functional roles of ciliary proteins in the manifestation of phenotypic features

    Deletion of TOP3β, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders

    Get PDF
    Implicating particular genes in the generation of complex brain and behavior phenotypes requires multiple lines of evidence. The rarity of most high impact genetic variants typically precludes the possibility of accruing statistical evidence that they are associated with a given trait. We show here that the enrichment of a rare Chromosome 22q11.22 deletion in a recently expanded Northern Finnish sub-isolate enables the detection of association between TOP3β and both schizophrenia and cognitive impairment. Biochemical analysis of TOP3β revealed that this topoisomerase is a component of cytosolic messenger ribonucleoproteins (mRNPs) and is catalytically active on RNA. The recruitment of TOP3β to mRNPs was independent of RNA cis-elements and was coupled to the co-recruitment of FMRP, the disease gene product in fragile X mental retardation syndrome (FXS). Thus, we uncover a novel role for TOP3β in mRNA metabolism and provide several lines of evidence implicating it in neurodevelopmental disorders

    Lethal evolution of a newborn with consistent features of hydrolethalus syndrome - Romanian patient

    No full text
    Hydrolethalus syndrome is a severe lethal disorder most commonly found in Finland. We present a lethal case of complex congenital malformation in a Romanian family who showed multiple signs described in hydrolethalus syndrome. Our case presented the specific characteristics: macrocephaly, midline cleft-lip, cleft palate, polydactyly of both hands and feet but without occipitoschisis, considered as the pathognomonic sign of the syndrome. Sequencing analysis of HYLS1 did not identify the point mutation present in the Finnish cases or other mutations in this gene.status: publishe
    corecore