2,409 research outputs found

    Concomitant granule cell neuronopathy in patients with natalizumab-associated PML

    Get PDF
    Granule cell neuronopathy (GCN) is a rare JC virus infection of the cerebellar granule cell neurons in immunocompromised patients. On brain imaging, GCN is characterized by cerebellar atrophy which can be accompanied by infratentorial white matter lesions. The objective of this study is to investigate the prevalence of MRI findings suggestive of GCN in a large natalizumab-associated progressive multifocal leukoencephalopathy (PML) cohort. MRI scans from before, at the time of, and during follow-up after diagnosis of PML in 44 natalizumab-treated MS patients, and a control group of 25 natalizumab-treated non-PML MS patients were retrospectively reviewed for imaging findings suggestive of GCN. To assess and quantify the degree of cerebellar atrophy, we used a 4 grade rating scale. Three patients in the PML group showed imaging findings suggestive of GCN and none in the control group. In two of these PML patients, cerebellar atrophy progressed from grade 0 at the time of diagnosis of isolated supratentorial PML to grade 1 and 2 after 2.5 and 3 months, respectively, in the absence of infratentorial white mater lesions. The third patient had grade 1 cerebellar atrophy before diagnosis of infra- and supratentorial PML, and showed progression of cerebellar atrophy to grade 2 in the 3 months following PML diagnosis. None of the other eight patients with infratentorial PML lesions developed cerebellar atrophy suggestive of GCN. Three cases with imaging findings suggestive of GCN were detected among 44 natalizumab-associated PML patients. GCN may, therefore, be more common than previously considered in natalizumab-associated PML patients

    Complexity Reduction of Polymorphic Sequences (CRoPS™): A Novel Approach for Large-Scale Polymorphism Discovery in Complex Genomes

    Get PDF
    Application of single nucleotide polymorphisms (SNPs) is revolutionizing human bio-medical research. However, discovery of polymorphisms in low polymorphic species is still a challenging and costly endeavor, despite widespread availability of Sanger sequencing technology. We present CRoPS™ as a novel approach for polymorphism discovery by combining the power of reproducible genome complexity reduction of AFLP® with Genome Sequencer (GS) 20/GS FLX next-generation sequencing technology. With CRoPS, hundreds-of-thousands of sequence reads derived from complexity-reduced genome sequences of two or more samples are processed and mined for SNPs using a fully-automated bioinformatics pipeline. We show that over 75% of putative maize SNPs discovered using CRoPS are successfully converted to SNPWave® assays, confirming them to be true SNPs derived from unique (single-copy) genome sequences. By using CRoPS, polymorphism discovery will become affordable in organisms with high levels of repetitive DNA in the genome and/or low levels of polymorphism in the (breeding) germplasm without the need for prior sequence information

    MLPAinter for MLPA interpretation: An integrated approach for the analysis, visualisation and data management of Multiplex Ligation-dependent Probe Amplification

    Get PDF
    Background: Multiplex Ligation-Dependent Probe Amplification (MLPA) is an application that can be used for the detection of multiple chromosomal aberrations in a single experiment. In one reaction, up to 50 different genomic sequences can be analysed. For a reliable work-flow, tools are needed for administrative support, data management, normalisation, visualisation, reporting and interpretation.Results: Here, we developed a data management system, MLPAInter for MLPA interpretation, that is windows executable and has a stand-alone database for monitoring and interpreting the MLPA data stream that is generated from the experimental setup to analysis, quality control and visualisation. A statistical approach is applied for the normalisation and analysis of large series of MLPA traces, making use of multiple control samples and internal controls.Conclusions: MLPAinter visualises MLPA data in plots with information about sample replicates, normalisation settings, and sample characteristics. This integrated approach helps in the automated handling of large series of MLPA data and guarantees a quick and streamlined dataflow from the beginning of an experiment to an authorised report

    Prevalence of BRCA1 in a hospital-based population of Dutch breast cancer patients

    Get PDF
    The prevalence of disease-related BRCA1 mutations was investigated in 642 Dutch breast cancer patients not selected for family history or age at diagnosis. They were tested for germline mutations in the BRCA1 gene using an assay which detects small deletions and insertions (DSDI), as well as the two major genomic founder deletions present in the Dutch population. Data on family history and bilateral breast cancer were obtained retrospectively. Ten protein truncating mutations were detected and one in-frame deletion with an unknown relation to disease risk. Four patients carried the Dutch founder deletion of exon 22. Based on these results the estimated prevalence of breast cancer in the general population in the Netherlands attributable to BRCA1 mutations is 2.1%. Under 40 years-of-age and under 50 years-of-age this prevalence is 9.5% and 6.4%, respectively. All mutation carriers were under 50 years-of-age at diagnosis of the first breast cancer, and five did not have any relative with breast cancer. The proportions of bilateral breast cancer in the mutation carriers and non-carriers did not differ from each other. These data indicate that in the general Dutch breast cancer population the great majority of BRCA1 mutations will be found in women diagnosed under 50 years-of-age. © 2000 Cancer Research Campaig

    Assessment of the Antiviral Properties of Recombinant Porcine SP-D against Various Influenza A Viruses In Vitro

    Get PDF
    The emergence of influenza viruses resistant to existing classes of antiviral drugs raises concern and there is a need for novel antiviral agents that could be used therapeutically or prophylacticaly. Surfactant protein D (SP-D) belongs to the family of C-type lectins which are important effector molecules of the innate immune system with activity against bacteria and viruses, including influenza viruses. In the present study we evaluated the potential of recombinant porcine SP-D as an antiviral agent against influenza A viruses (IAVs) in vitro. To determine the range of antiviral activity, thirty IAVs of the subtypes H1N1, H3N2 and H5N1 that originated from birds, pigs and humans were selected and tested for their sensitivity to recombinant SP-D. Using these viruses it was shown by hemagglutination inhibition assay, that recombinant porcine SP-D was more potent than recombinant human SP-D and that especially higher order oligomeric forms of SP-D had the strongest antiviral activity. Porcine SP-D was active against a broad range of IAV strains and neutralized a variety of H1N1 and H3N2 IAVs, including 2009 pandemic H1N1 viruses. Using tissue sections of ferret and human trachea, we demonstrated that recombinant porcine SP-D prevented attachment of human seasonal H1N1 and H3N2 virus to receptors on epithelial cells of the upper respiratory tract. It was concluded that recombinant porcine SP-D holds promise as a novel antiviral agent against influenza and further development and evaluation in vivo seems warranted

    Genetic Specificity of Hippocampal Subfield Volumes, Relative to Hippocampal Formation, Identified in 2148 Young Adult Twins and Siblings

    Get PDF
    The hippocampus is a complex brain structure with key roles in cognitive and emotional processing and with subregion abnormalities associated with a range of disorders and psychopathologies. Here we combine data from two large independent young adult twin/sibling cohorts to obtain the most accurate estimates to date of genetic covariation between hippocampal subfield volumes and the hippocampus as a single volume. The combined sample included 2148 individuals, comprising 1073 individuals from 627 families (mean age = 22.3 years) from the Queensland Twin IMaging (QTIM) Study, and 1075 individuals from 454 families (mean age = 28.8 years) from the Human Connectome Project (HCP). Hippocampal subfields were segmented using FreeSurfer version 6.0 (CA4 and dentate gyrus were phenotypically and genetically indistinguishable and were summed to a single volume). Multivariate twin modeling was conducted in OpenMx to decompose variance into genetic and environmental sources. Bivariate analyses of hippocampal formation and each subfield volume showed that 10%–72% of subfield genetic variance was independent of the hippocampal formation, with greatest specificity found for the smaller volumes; for example, CA2/3 with 42% of genetic variance being independent of the hippocampus; fissure (63%); fimbria (72%); hippocampus-amygdala transition area (41%); parasubiculum (62%). In terms of genetic influence, whole hippocampal volume is a good proxy for the largest hippocampal subfields, but a poor substitute for the smaller subfields. Additive genetic sources accounted for 49%–77% of total variance for each of the subfields in the combined sample multivariate analysis. In addition, the multivariate analyses were sufficiently powered to identify common environmental influences (replicated in QTIM and HCP for the molecular layer and CA4/dentate gyrus, and accounting for 7%–16% of total variance for 8 of 10 subfields in the combined sample). This provides the clearest indication yet from a twin study that factors such as home environment may influence hippocampal volumes (albeit, with caveats)
    corecore