1,294 research outputs found
Spin conductivity in almost integrable spin chains
The spin conductivity in the integrable spin-1/2 XXZ-chain is known to be
infinite at finite temperatures T for anisotropies -1 < Delta < 1.
Perturbations which break integrability, e.g. a next-nearest neighbor coupling
J', render the conductivity finite. We construct numerically a non-local
conserved operator J_parallel which is responsible for the finite spin Drude
weight of the integrable model and calculate its decay rate for small J'. This
allows us to obtain a lower bound for the spin conductivity sigma_s >= c(T) /
J'^2, where c(T) is finite for J' to 0. We discuss the implication of our
result for the general question how non-local conservation laws affect
transport properties.Comment: 6 pages, 5 figure
Mott transition of fermionic atoms in a three-dimensional optical trap
We study theoretically the Mott metal-insulator transition for a system of
fermionic atoms confined in a three-dimensional optical lattice and a harmonic
trap. We describe an inhomogeneous system of several thousand sites using an
adaptation of dynamical mean field theory solved efficiently with the numerical
renormalization group method. Above a critical value of the on-site
interaction, a Mott-insulating phase appears in the system. We investigate
signatures of the Mott phase in the density profile and in time-of-flight
experiments.Comment: 4 pages and 5 figure
Metal-Insulator Transition of the LaAlO3-SrTiO3 Interface Electron System
We report on a metal-insulator transition in the LaAlO3-SrTiO3 interface
electron system, of which the carrier density is tuned by an electric gate
field. Below a critical carrier density n_c ranging from 0.5-1.5 * 10^13/cm^2,
LaAlO3-SrTiO3 interfaces, forming drain-source channels in field-effect devices
are non-ohmic. The differential resistance at zero channel bias diverges within
a 2% variation of the carrier density. Above n_c, the conductivity of the ohmic
channels has a metal-like temperature dependence, while below n_c conductivity
sets in only above a threshold electric field. For a given thickness of the
LaAlO3 layer, the conductivity follows a sigma_0 ~(n - n_c)/n_c characteristic.
The metal-insulator transition is found to be distinct from that of the
semiconductor 2D systems.Comment: 4 figure
Weak spin-orbit interactions induce exponentially flat mini-bands in magnetic metals without inversion symmetry
In metallic magnets like MnSi the interplay of two very weak spin-orbit
coupling effects can strongly modify the Fermi surface. In the absence of
inversion symmetry even a very small Dzyaloshinsky-Moriya interaction of
strength delta<<1 distorts a ferromagnetic state into a chiral helix with a
long pitch of order 1/delta. We show that additional small spin-orbit coupling
terms of order delta in the band structure lead to the formation of
exponentially flat minibands with a bandwidth of order exp(-1/sqrt(delta))
parallel to the direction of the helix. These flat minibands cover a rather
broad belt of width sqrt(delta) on the Fermi surface where electron motion
parallel to the helix practically stops. We argue that these peculiar
band-structure effects lead to pronounced features in the anomalous skin
effect.Comment: 7 pages, minor corrections, references adde
Kondo proximity effect: How does a metal penetrate into a Mott insulator?
We consider a heterostructure of a metal and a paramagnetic Mott insulator
using an adaptation of dynamical mean field theory to describe inhomogeneous
systems. The metal can penetrate into the insulator via the Kondo effect. We
investigate the scaling properties of the metal-insulator interface close to
the critical point of the Mott insulator. At criticality, the quasiparticle
weight decays as 1/x^2 with distance x from the metal within our mean field
theory. Our numerical results (using the numerical renormalization group as an
impurity solver) show that the prefactor of this power law is extremely small.Comment: 4 pages, 3 figure
Interplay of disorder and spin fluctuations in the resistivity near a quantum critical point
The resistivity in metals near an antiferromagnetic quantum critical point
(QCP) is strongly affected by small amounts of disorder. In a quasi-classical
treatment, we show that an interplay of strongly anisotropic scattering due to
spin fluctuations and isotropic impurity scattering leads to a large regime
where the resistivity varies as T^alpha, with an anomalous exponent, alpha, 1
<= alpha <= 1.5, depending on the amount of disorder. I argue that this
mechanism explains in some detail the anomalous temperature dependence of the
resistivity observed in CePd_2Si_2, CeNi_2Ge_2 and CeIn_3 near the QCP.Comment: 4 pages, 4 eps figures, published version, only small change
Violation of the Luttinger sum rule within the Hubbard model on a triangular lattice
The frequency-moment expansion method is developed to analyze the validity of
the Luttinger sum rule within the Mott-Hubbard insulator, as represented by the
generalized Hubbard model at half filling and large . For the particular
case of the Hubbard model with nearest-neighbor hopping on a triangular lattice
lacking the particle-hole symmetry results reveal substantial violation of the
sum rule.Comment: 4 pages, 2 figure
Thermal Conductivity of Spin-1/2 Chains
We study the low-temperature transport properties of clean one-dimensional
spin-1/2 chains coupled to phonons. Due to the presence of approximate
conservation laws, the heat current decays very slowly giving rise to an
exponentially large heat conductivity, . As a result of an
interplay of Umklapp scattering and spinon-phonon coupling, the characteristic
energy scale turns out to be of order , where is
the Debye energy, rather than the magnetic exchange interaction -- in
agreement with recent measurements in SrCuO compounds. A large magnetic field
strongly affects the heat transport by two distinct mechanisms. First, it
induces a LINEAR spinon--phonon coupling, which alters the nature of the fixed point: the elementary excitations of the system are COMPOSITE
SPINON-PHONON objects. Second, the change of the magnetization and the
corresponding change of the wave vector of the spinons strongly affects the way
in which various Umklapp processes can relax the heat current, leading to a
characteristic fractal--like spiky behavior of when plotted as a
function of magnetization at fixed T.Comment: 16 pages, RevTex4, 2 figures included; revised refs. and some useful
comments on experimental relevance. On July 12 2005, added an appendix
correcting an error in the form of the phonon propagator. The main result is
unchange
Nonequilibrium Singlet-Triplet Kondo Effect in Carbon Nanotubes
The Kondo-effect is a many-body phenomenon arising due to conduction
electrons scattering off a localized spin. Coherent spin-flip scattering off
such a quantum impurity correlates the conduction electrons and at low
temperature this leads to a zero-bias conductance anomaly. This has become a
common signature in bias-spectroscopy of single-electron transistors, observed
in GaAs quantum dots as well as in various single-molecule transistors. While
the zero-bias Kondo effect is well established it remains uncertain to what
extent Kondo correlations persist in non-equilibrium situations where inelastic
processes induce decoherence. Here we report on a pronounced conductance peak
observed at finite bias-voltage in a carbon nanotube quantum dot in the spin
singlet ground state. We explain this finite-bias conductance anomaly by a
nonequilibrium Kondo-effect involving excitations into a spin triplet state.
Excellent agreement between calculated and measured nonlinear conductance is
obtained, thus strongly supporting the correlated nature of this nonequilibrium
resonance.Comment: 21 pages, 5 figure
Kondo decoherence: finding the right spin model for iron impurities in gold and silver
We exploit the decoherence of electrons due to magnetic impurities, studied
via weak localization, to resolve a longstanding question concerning the
classic Kondo systems of Fe impurities in the noble metals gold and silver:
which Kondo-type model yields a realistic description of the relevant multiple
bands, spin and orbital degrees of freedom? Previous studies suggest a fully
screened spin Kondo model, but the value of remained ambiguous. We
perform density functional theory calculations that suggest . We also
compare previous and new measurements of both the resistivity and decoherence
rate in quasi 1-dimensional wires to numerical renormalization group
predictions for and 3/2, finding excellent agreement for .Comment: 4 pages, 4 figures, shortened for PR
- …