18,812 research outputs found

    Thermal barrier coating life-prediction model development

    Get PDF
    Life predictions are made for two types of strain-tolerant and oxidation-resistant Thermal Barrier Coating (TBC) systems produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma spray (LPPS) applied oxidation-resistant NiCrAlY bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by both Chromalloy and Klock. The second type of TBC is applied by the electron-beam/physical vapor deposition process by Temescal. Thermomechanical and thermochemical testing of the program TBCs is in progress. A number of the former tests has been completed. Fracture mechanics data for the Chromalloy plasma-sprayed TBC system indicate that the cohesive toughness of the zirconia layer is increased by thermal cycling and reduced by high temperature exposure at 1150 C. Eddy current technology feasibility has been established with respect to nondestructively measuring zirconia layer thickness of a TBC system. High pressure turbine blades have been coated with program TBC systems for a piggyback test in a TFE731-5 turbofan factory engine test. Data from this test will be used to validate the TBC life models

    No-cloning theorem in thermofield dynamics

    Full text link
    We discuss the relation between the no-cloning theorem from quantum information and the doubling procedure used in the formalism of thermofield dynamics (TFD). We also discuss how to apply the no-cloning theorem in the context of thermofield states defined in TFD. Consequences associated to mixed states, von Neumann entropy and thermofield vacuum are also addressed.Comment: 16 pages, 3 figure

    Thermal barrier coating life prediction model development

    Get PDF
    Thermal barrier coatings (TBCs) for turbine airfoils in high-performance engines represent an advanced materials technology with both performance and durability benefits. The foremost TBC benefit is the reduction of heat transferred into air-cooled components, which yields performance and durability benefits. This program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant TBC systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY (or CoNiCrAlY) bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by Chromalloy, Klock, and Union Carbide. The second type of TBC is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal

    Ground state overlap and quantum phase transitions

    Full text link
    We present a characterization of quantum phase transitions in terms of the the overlap function between two ground states obtained for two different values of external parameters. On the examples of the Dicke and XY models, we show that the regions of criticality of a system are marked by the extremal points of the overlap and functions closely related to it. Further, we discuss the connections between this approach and the Anderson orthogonality catastrophe as well as with the dynamical study of the Loschmidt echo for critical systems.Comment: 5 pages. Version to be published, title change

    Circalunar clocks—Old experiments for a new era

    Get PDF
    Abstract Circalunar clocks, which allow organisms to time reproduction to lunar phase, have been experimentally proven but are still not understood at the molecular level. Currently, a new generation of researchers with new tools is setting out to fill this gap. Our essay provides an overview of classic experiments on circalunar clocks. From the unpublished work of the late D. Neumann we also present a novel phase response curve for a circalunar clock. These experiments highlight avenues for molecular work and call for rigor in setting up and analyzing the logistically complex experiments on circalunar clocks. Re-evaluating classic experiments, we propose that (1) circalunar clocks in different organisms will have divergent mechanisms and physiological bases, (2) they may have properties very different from the well-studied circadian clocks and (3) they may have close mechanistic and molecular relations to seasonal rhythms and diapause

    Performance of a centrifugal pump running in inverse mode

    Get PDF
    This paper presents the functional characterization of a centrifugal pump used as a turbine. It shows the characteristics of the machine involved at several rotational speeds, comparing the respective flows and heads. In this way, it is possible to observe the influence of the rotational speed on efficiency, as well as obtaining the characteristics at constant head and runaway speed. Also, the forces actuating on the impeller were studied. An uncertainty analysis was made to assess the accuracy of the results. The research results indicate that the turbine characteristics can be predicted to some extent from the pump characteristics, that water flows out of the runner free of swirl flow at the best efficiency point, and that radial stresses are lower than in pump mode

    Local Unitary Quantum Cellular Automata

    Get PDF
    In this paper we present a quantization of Cellular Automata. Our formalism is based on a lattice of qudits, and an update rule consisting of local unitary operators that commute with their own lattice translations. One purpose of this model is to act as a theoretical model of quantum computation, similar to the quantum circuit model. It is also shown to be an appropriate abstraction for space-homogeneous quantum phenomena, such as quantum lattice gases, spin chains and others. Some results that show the benefits of basing the model on local unitary operators are shown: universality, strong connections to the circuit model, simple implementation on quantum hardware, and a wealth of applications.Comment: To appear in Physical Review

    Experiments with hierarchical reinforcement learning of multiple grasping policies

    Get PDF
    Robotic grasping has attracted considerable interest, but it still remains a challenging task. The data-driven approach is a promising solution to the robotic grasping problem; this approach leverages a grasp dataset and generalizes grasps for various objects. However, these methods often depend on the quality of the given datasets, which are not trivial to obtain with sufficient quality. Although reinforcement learning approaches have been recently used to achieve autonomous collection of grasp datasets, the existing algorithms are often limited to specific grasp types. In this paper, we present a framework for hierarchical reinforcement learning of grasping policies. In our framework, the lowerlevel hierarchy learns multiple grasp types, and the upper-level hierarchy learns a policy to select from the learned grasp types according to a point cloud of a new object. Through experiments, we validate that our approach learns grasping by constructing the grasp dataset autonomously. The experimental results show that our approach learns multiple grasping policies and generalizes the learned grasps by using local point cloud information
    • …
    corecore