18,812 research outputs found
Thermal barrier coating life-prediction model development
Life predictions are made for two types of strain-tolerant and oxidation-resistant Thermal Barrier Coating (TBC) systems produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma spray (LPPS) applied oxidation-resistant NiCrAlY bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by both Chromalloy and Klock. The second type of TBC is applied by the electron-beam/physical vapor deposition process by Temescal. Thermomechanical and thermochemical testing of the program TBCs is in progress. A number of the former tests has been completed. Fracture mechanics data for the Chromalloy plasma-sprayed TBC system indicate that the cohesive toughness of the zirconia layer is increased by thermal cycling and reduced by high temperature exposure at 1150 C. Eddy current technology feasibility has been established with respect to nondestructively measuring zirconia layer thickness of a TBC system. High pressure turbine blades have been coated with program TBC systems for a piggyback test in a TFE731-5 turbofan factory engine test. Data from this test will be used to validate the TBC life models
No-cloning theorem in thermofield dynamics
We discuss the relation between the no-cloning theorem from quantum
information and the doubling procedure used in the formalism of thermofield
dynamics (TFD). We also discuss how to apply the no-cloning theorem in the
context of thermofield states defined in TFD. Consequences associated to mixed
states, von Neumann entropy and thermofield vacuum are also addressed.Comment: 16 pages, 3 figure
Thermal barrier coating life prediction model development
Thermal barrier coatings (TBCs) for turbine airfoils in high-performance engines represent an advanced materials technology with both performance and durability benefits. The foremost TBC benefit is the reduction of heat transferred into air-cooled components, which yields performance and durability benefits. This program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant TBC systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma-spray (LPPS) or an argon shrouded plasma-spray (ASPS) applied oxidation resistant NiCrAlY (or CoNiCrAlY) bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by Chromalloy, Klock, and Union Carbide. The second type of TBC is applied by the electron beam-physical vapor deposition (EB-PVD) process by Temescal
Ground state overlap and quantum phase transitions
We present a characterization of quantum phase transitions in terms of the
the overlap function between two ground states obtained for two different
values of external parameters. On the examples of the Dicke and XY models, we
show that the regions of criticality of a system are marked by the extremal
points of the overlap and functions closely related to it. Further, we discuss
the connections between this approach and the Anderson orthogonality
catastrophe as well as with the dynamical study of the Loschmidt echo for
critical systems.Comment: 5 pages. Version to be published, title change
Circalunar clocks—Old experiments for a new era
Abstract Circalunar clocks, which allow organisms to time reproduction to lunar phase, have been experimentally proven but are still not understood at the molecular level. Currently, a new generation of researchers with new tools is setting out to fill this gap. Our essay provides an overview of classic experiments on circalunar clocks. From the unpublished work of the late D. Neumann we also present a novel phase response curve for a circalunar clock. These experiments highlight avenues for molecular work and call for rigor in setting up and analyzing the logistically complex experiments on circalunar clocks. Re-evaluating classic experiments, we propose that (1) circalunar clocks in different organisms will have divergent mechanisms and physiological bases, (2) they may have properties very different from the well-studied circadian clocks and (3) they may have close mechanistic and molecular relations to seasonal rhythms and diapause
Performance of a centrifugal pump running in inverse mode
This paper presents the functional characterization of a centrifugal pump used as a turbine. It shows the characteristics of the machine involved at several rotational speeds, comparing the respective flows and heads. In this way, it is possible to observe the influence of the rotational speed on efficiency, as well as obtaining the characteristics at constant head and runaway speed. Also, the forces actuating on the impeller were studied. An uncertainty analysis was made to assess the accuracy of the results. The research results indicate that the turbine characteristics can be predicted to some extent from the pump characteristics, that water flows out of the runner free of swirl flow at the best efficiency point, and that radial stresses are lower than in pump mode
Local Unitary Quantum Cellular Automata
In this paper we present a quantization of Cellular Automata. Our formalism
is based on a lattice of qudits, and an update rule consisting of local unitary
operators that commute with their own lattice translations. One purpose of this
model is to act as a theoretical model of quantum computation, similar to the
quantum circuit model. It is also shown to be an appropriate abstraction for
space-homogeneous quantum phenomena, such as quantum lattice gases, spin chains
and others. Some results that show the benefits of basing the model on local
unitary operators are shown: universality, strong connections to the circuit
model, simple implementation on quantum hardware, and a wealth of applications.Comment: To appear in Physical Review
Experiments with hierarchical reinforcement learning of multiple grasping policies
Robotic grasping has attracted considerable interest, but it
still remains a challenging task. The data-driven approach is a promising
solution to the robotic grasping problem; this approach leverages a
grasp dataset and generalizes grasps for various objects. However, these
methods often depend on the quality of the given datasets, which are not
trivial to obtain with sufficient quality. Although reinforcement learning
approaches have been recently used to achieve autonomous collection
of grasp datasets, the existing algorithms are often limited to specific
grasp types. In this paper, we present a framework for hierarchical reinforcement
learning of grasping policies. In our framework, the lowerlevel
hierarchy learns multiple grasp types, and the upper-level hierarchy
learns a policy to select from the learned grasp types according to a point
cloud of a new object. Through experiments, we validate that our approach
learns grasping by constructing the grasp dataset autonomously.
The experimental results show that our approach learns multiple grasping
policies and generalizes the learned grasps by using local point cloud
information
- …