380 research outputs found

    Taxonomic status of the Liberian Greenbul Phyllastrephus leucolepis and the conservation importance of the Cavalla Forest, Liberia

    Get PDF
    We thank Jochen Martens for his long-lasting patience in dealing with the specimen of leucolepis, and Brian Hillcoat for comments and advice. It is hardly possible to thank by name all those who have supported WG over the past 30 years and more since 1981 in the fields of forest ecology and ornithology in eastern Liberia. In particular, we express gratitude to Alex Peal and Theo Freeman, both Heads of Wildlife and National Parks, for their many years of cooperation, and the Silviculture Officers Wynn Bryant, Momo Kromah and Steve Miapeh. The knowledge of the tree experts Joe Keper and Daniel Dorbor helped us to gain insights into the ecological complexities of the relationship between man, birds and trees. William Toe worked for three years as bird trapper and assistant in bird banding. WG’s attachment to the University of Liberia and to the students who so often accompanied him was made possible by Ben Karmorh from the Environmental Protection Agency (EPA) and University of Liberia. NABU, the German Conservation Society, has supported the Liberian projects for almost 30 years now. We also thank Nigel Collar, Françoise Dowsett-Lemaire and Hannah Rowland for comments and advice. We thank the African Bird Club and the Royal Society for the Protection of Birds for helping to fund the 2013 expedition to the Cavalla Forest, in particular Alice Ward-Francis, Robert Sheldon, Alan Williams and Keith Betton. We also are extremely grateful to Michael Garbo and staff of the Society for the Conservation of Nature in Liberia for all manner of help with the expedition, to Harrison Karnwea and colleagues at the Forest Development Authority of Liberia for permissions and other support, as well as to Emmanuel Loqueh, Trokon Grimes, Flomo Molubah and Amos ‘Dweh’ Dorbor for being such excellent companions in the field. YL performed the genetic work as part of her M.Sc. (Genetics) at the University of Aberdeen, whose support is acknowledged.Peer reviewedPublisher PD

    Powdery mildew responsive genes of resistant grapevine cultivar 'Regent'

    Get PDF
    The ascomycete Erysiphe necator causes powdery mildew disease of grapevine, a disastrous infection which is commonly defeated with multiple fungicide applications in viticulture. Breeding for natural resistance of quality grapes (Vitis vinifera) is thus a major aim of current efforts. The cultivar 'Regent' is resistant to powdery mildew due to an introgression from an American Vitis sp. resistance donor. To identify key regulatory elements in defense responses of 'Regent' we performed transcript analyses after challenging with E. necator inoculation in comparison with a susceptible grapevine. A set of genes selected from preliminary microarray hybridization results were investigated by RT-qPCR. The data indicate an important role of transcription factors MYB15, WRKY75, WRKY33, WRKY7, ethylene responsive transcription factors ERF2 and ERF5 as well as a CZF1/ZFAR transcripton factor in regulating the early defense when the fungus starts the interaction with its host by the formation of haustoria

    High-resolution 3D phenotyping of the grapevine root system using X-ray Computed Tomography

    Get PDF
    Plant roots are essential for water and nutrient uptake and contribute to the plants' response to environmental stress factors. As the hidden half of a plant, investigation of root systems is highly challenging, most of available methods are destructive and very labour-intensive. In this proof-of-concept study, a non-invasive X-ray micro computed tomography (X-ray ”CT) method was applied to investigate the phenotypic variation of the complex three-dimensional (3D) architecture of grapevine roots as a function of genotype and soil. Woody cuttings of 'Calardis Musqué', 'Villard Blanc' and V3125 ('Schiava Grossa' x 'Riesling') were cultivated in polypropylene columns filled with two different soil types, clay loam and sandy loam, for 6 weeks. Afterwards, the columns were scanned once using the technique of X-ray ”CT. The received raw data were analysed for the reconstruction of 3D root system models (3D model), which display a non-destructive visualization of whole, intact root systems with a spatial resolution of 42 ”m. The 3D models of all investigated plants (in total 18) were applied to quantify root system characteristics precisely by measuring adventitious root length, lateral root length, total root length, root system surface area, root system volume and root growth angles from the woody cutting relative to a horizontal axis. The results showed that: (i) early root formation and root growth differed between genotypes, especially between 'Calardis Musqué' and 'Villard Blanc'; and (ii) the soil type does influence adventitious root formation of V3125, but had minor effects on 'Calardis Musqué' and 'Villard Blanc'. In conclusion, this innovative, high-resolution method of X-ray ”CT is suitable for high resolution phenotyping of root formation, architecture, and rooting characteristics of grapevine woody cuttings in a non-destructive manner, e.g. to investigate root response to drought stress and would provide new insights into phylloxera root infection

    Inferring the Scale of OpenStreetMap Features

    Get PDF
    International audienceTraditionally, national mapping agencies produced datasets and map products for a low number of specified and internally consistent scales, i.e. at a common level of detail (LoD). With the advent of projects like OpenStreetMap, data users are increasingly confronted with the task of dealing with heterogeneously detailed and scaled geodata. Knowing the scale of geodata is very important for mapping processes such as for generalization of label placement or land-cover studies for instance. In the following chapter, we review and compare two concurrent approaches at automatically assigning scale to OSM objects. The first approach is based on a multi-criteria decision making model, with a rationalist approach for defining and parameterizing the respective criteria, yielding five broad LoD classes. The second approach attempts to identify a single metric from an analysis process, which is then used to interpolate a scale equivalence. Both approaches are combined and tested against well-known Corine data, resulting in an improvement of the scale inference process. The chapter closes with a presentation of the most pressing open problem

    Nanosized Sodium-Doped Lanthanum Manganites: Role of the Synthetic Route on their Physical Properties

    Full text link
    In this paper we present the results of the synthesis and characterisation of nanocrystalline La1-xNaxMnO3+delta samples. Two synthetic routes were employed: polyacrylamide-based sol-gel and propellant synthesis. Pure, single phase materials were obtained with grain size around 35 nm for the sol-gel samples and around 55 nm for the propellant ones, which moreover present a more broaden grain size distribution. For both series a superparamagnetic behaviour was evidenced by means of magnetisation and EPR measurements with peculiar features ascribable to the different grain sizes and morphology. Preliminary magnetoresistivity measurements show enhanced low-field (< 1 T) magnetoresistance values which suggest an interesting applicative use of these manganites.Comment: 31 Pages 10 Figures to appear in Chem. Mate

    Nd–Fe–B thick film magnets with Nb additive prepared by vacuum arc deposition method

    Get PDF
    Isotropic Nd-Fe-B thick film magnets were prepared by a vacuum arc deposition method with the deposition rate of approximately 10 ÎŒm/h followed by pulse-annealing process. It was found that an optimum amount of Nb additive is effective to enhance the coercivity without the deterioration of remanence and (BH)max values of the isotropic thick films

    Magnetic and Cytotoxicity Properties of La1−xSrxMnO3(0 ≀ x ≀ 0.5) Nanoparticles Prepared by a Simple Thermal Hydro-Decomposition

    Get PDF
    This study reports the magnetic and cytotoxicity properties of magnetic nanoparticles of La1−xSrxMnO3(LSMO) withx = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 by a simple thermal decomposition method by using acetate salts of La, Sr, and Mn as starting materials in aqueous solution. To obtain the LSMO nanoparticles, thermal decomposition of the precursor was carried out at the temperatures of 600, 700, 800, and 900 °C for 6 h. The synthesized LSMO nanoparticles were characterized by XRD, FT-IR, TEM, and SEM. Structural characterization shows that the prepared particles consist of two phases of LaMnO3(LMO) and LSMO with crystallite sizes ranging from 20 nm to 87 nm. All the prepared samples have a perovskite structure with transformation from cubic to rhombohedral at thermal decomposition temperature higher than 900 °C in LSMO samples ofx ≀ 0.3. Basic magnetic characteristics such as saturated magnetization (MS) and coercive field (HC) were evaluated by vibrating sample magnetometry at room temperature (20 °C). The samples show paramagnetic behavior for all the samples withx = 0 or LMO, and a superparamagnetic behavior for the other samples havingMSvalues of ~20–47 emu/g and theHCvalues of ~10–40 Oe, depending on the crystallite size and thermal decomposition temperature. Cytotoxicity of the synthesized LSMO nanoparticles was also evaluated with NIH 3T3 cells and the result shows that the synthesized nanoparticles were not toxic to the cells as determined from cell viability in response to the liquid extract of LSMO nanoparticles
    • 

    corecore