34 research outputs found

    Probing Retroviral and Retrotransposon Genome Structures: The “SHAPE” of Things to Come

    Get PDF
    Understanding the nuances of RNA structure as they pertain to biological function remains a formidable challenge for retrovirus research and development of RNA-based therapeutics, an area of particular importance with respect to combating HIV infection. Although a variety of chemical and enzymatic RNA probing techniques have been successfully employed for more than 30 years, they primarily interrogate small (100–500 nt) RNAs that have been removed from their biological context, potentially eliminating long-range tertiary interactions (such as kissing loops and pseudoknots) that may play a critical regulatory role. Selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE), pioneered recently by Merino and colleagues, represents a facile, user-friendly technology capable of interrogating RNA structure with a single reagent and, combined with automated capillary electrophoresis, can analyze an entire 10,000-nucleotide RNA genome in a matter of weeks. Despite these obvious advantages, SHAPE essentially provides a nucleotide “connectivity map,” conversion of which into a 3-D structure requires a variety of complementary approaches. This paper summarizes contributions from SHAPE towards our understanding of the structure of retroviral genomes, modifications to which technology that have been developed to address some of its limitations, and future challenges

    Expression of alternatively spliced human T-cell leukemia virus type 1 mRNAs is influenced by mitosis and by a novel cis-acting regulatory sequence

    Get PDF
    Human T-cell leukemia virus type 1 (HTLV-1) expression depends on the concerted action of Tax, which drives transcription of the viral genome, and Rex, which favors expression of incompletely spliced mRNAs and determines a 2-phase temporal pattern of viral expression. In the present study, we investigated the Rex dependence of the complete set of alternatively spliced HTLV-1 mRNAs. Analyses of cells transfected with Rex-wild-type and Rex-knockout HTLV-1 molecular clones using splice site-specific quantitative reverse transcription (qRT)-PCR revealed that mRNAs encoding the p30Tof, p13, and p12/8 proteins were Rex dependent, while the p21rex mRNA was Rex independent. These findings provide a rational explanation for the intermediate-late temporal pattern of expression of the p30tof, p13, and p12/8 mRNAs described in previous studies. All the Rex-dependent mRNAs contained a 75-nucleotide intronic region that increased the nuclear retention and degradation of a reporter mRNA in the absence of other viral sequences. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis revealed that this sequence formed a stable hairpin structure. Cell cycle synchronization experiments indicated that mitosis partially bypasses the requirement for Rex to export Rex-dependent HTLV-1 transcripts. These findings indicate a link between the cycling properties of the host cell and the temporal pattern of viral expression/latency that might influence the ability of the virus to spread and evade the immune system

    Probing the Structures of Viral RNA Regulatory Elements with SHAPE and Related Methodologies

    No full text
    Viral RNAs were selected by evolution to possess maximum functionality in a minimal sequence. Depending on the classification of the virus and the type of RNA in question, viral RNAs must alternately be replicated, spliced, transcribed, transported from the nucleus into the cytoplasm, translated and/or packaged into nascent virions, and in most cases, provide the sequence and structural determinants to facilitate these processes. One consequence of this compact multifunctionality is that viral RNA structures can be exquisitely complex, often involving intermolecular interactions with RNA or protein, intramolecular interactions between sequence segments separated by several thousands of nucleotides, or specialized motifs such as pseudoknots or kissing loops. The fluidity of viral RNA structure can also present a challenge when attempting to characterize it, as genomic RNAs especially are likely to sample numerous conformations at various stages of the virus life cycle. Here we review advances in chemoenzymatic structure probing that have made it possible to address such challenges with respect to cis-acting elements, full-length viral genomes and long non-coding RNAs that play a major role in regulating viral gene expression

    Meeting report: Third Summer School on Innovative Approaches for Identification of Antiviral Agents (IAAASS)

    No full text
    The third Summer School on Innovative Approaches for Identification of Antiviral Agents (IAAASS) was held from September 28th to October 2nd, 2016 at the Sardegna Ricerche Research Park in Santa Margherita di Pula, Sardinia, Italy. The school brought together graduate students and postdoctoral fellows early in their careers with a faculty of internationally recognized experts, to encourage the sharing of knowledge and experience in virology research and drug development in an informal and interactive environment. The first IAAASS was held in Sardinia in 2012 and the second in 2014. The meetings provide a unique combination of plenary lectures on topics in virology, biochemistry, molecular modeling, crystallography and medicinal chemistry with small group sessions, in which students have the opportunity to ask questions and put forward their own ideas, and senior researchers offer advice, based on their own experience. This report summarizes presentations and presentations at the 3rd IAAASS

    Development of Small Molecules with a Noncanonical Binding Mode to HIV‑1 Trans Activation Response (TAR) RNA

    No full text
    Small molecules that bind to RNA potently and specifically are relatively rare. The study of molecules that bind to the HIV-1 transactivation response (TAR) hairpin, a cis-acting HIV genomic element, has long been an important model system for the chemistry of targeting RNA. Here we report the synthesis, biochemical, and structural evaluation of a series of molecules that bind to HIV-1 TAR RNA. A promising analogue, <b>15</b>, retained the TAR binding affinity of the initial hit and displaced a Tat-derived peptide with an IC<sub>50</sub> of 40 μM. NMR characterization of a soluble analogue, <b>2</b>, revealed a noncanonical binding mode for this class of compounds. Finally, evaluation of <b>2</b> and <b>15</b> by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) indicates specificity in binding to TAR within the context of an in vitro-synthesized 365-nt HIV-1 5′-untranslated region (UTR). Thus, these compounds exhibit a novel and specific mode of interaction with TAR, providing important suggestions for RNA ligand design
    corecore