543 research outputs found
A massive, quiescent galaxy at redshift of z=3.717
In the early Universe finding massive galaxies that have stopped forming
stars present an observational challenge as their rest-frame ultraviolet
emission is negligible and they can only be reliably identified by extremely
deep near-infrared surveys. These have revealed the presence of massive,
quiescent early-type galaxies appearing in the universe as early as z2,
an epoch 3 Gyr after the Big Bang. Their age and formation processes have now
been explained by an improved generation of galaxy formation models where they
form rapidly at z3-4, consistent with the typical masses and ages derived
from their observations. Deeper surveys have now reported evidence for
populations of massive, quiescent galaxies at even higher redshifts and earlier
times, however the evidence for their existence, and redshift, has relied
entirely on coarsely sampled photometry. These early massive, quiescent
galaxies are not predicted by the latest generation of theoretical models.
Here, we report the spectroscopic confirmation of one of these galaxies at
redshift z=3.717 with a stellar mass of 1.710 M whose
absorption line spectrum shows no current star-formation and which has a
derived age of nearly half the age of the Universe at this redshift. The
observations demonstrates that the galaxy must have quickly formed the majority
of its stars within the first billion years of cosmic history in an extreme and
short starburst. This ancestral event is similar to those starting to be found
by sub-mm wavelength surveys pointing to a possible connection between these
two populations. Early formation of such massive systems is likely to require
significant revisions to our picture of early galaxy assembly.Comment: 6 pages, 7 figures. This is the final preprint corresponding closely
to the published version. Uploaded 6 months after publication in accordance
with Nature polic
Quality control in major abdominal surgery
Cuesta Valentin, M.A. [Promotor]Peet, D.L. van der [Copromotor
Z-FIRE: ISM properties of the z = 2.095 COSMOS Cluster
We investigate the ISM properties of 13 star-forming galaxies within the z~2
COSMOS cluster. We show that the cluster members have [NII]/Ha and [OIII]/Hb
emission-line ratios similar to z~2 field galaxies, yet systematically
different emission-line ratios (by ~0.17 dex) from the majority of local
star-forming galaxies. We find no statistically significant difference in the
[NII]/Ha and [OIII]/Hb line ratios or ISM pressures among the z~2 cluster
galaxies and field galaxies at the same redshift. We show that our cluster
galaxies have significantly larger ionization parameters (by up to an order of
magnitude) than local star-forming galaxies. We hypothesize that these high
ionization parameters may be associated with large specific star formation
rates (i.e. a large star formation rate per unit stellar mass). If this
hypothesis is correct, then this relationship would have important implications
for the geometry and/or the mass of stars contained within individual star
clusters as a function of redshift.Comment: 11 pages, 5 figures, accepted for publication in Ap
ZFIRE: The Evolution of the Stellar Mass Tully-Fisher Relation to Redshift 2.0 < Z < 2.5 with MOSFIRE
Using observations made with MOSFIRE on Keck I as part of the ZFIRE survey,
we present the stellar mass Tully-Fisher relation at 2.0 < z < 2.5. The sample
was drawn from a stellar mass limited, Ks-band selected catalog from ZFOURGE
over the CANDELS area in the COSMOS field. We model the shear of the Halpha
emission line to derive rotational velocities at 2.2X the scale radius of an
exponential disk (V2.2). We correct for the blurring effect of a
two-dimensional PSF and the fact that the MOSFIRE PSF is better approximated by
a Moffat than a Gaussian, which is more typically assumed for natural seeing.
We find for the Tully-Fisher relation at 2.0 < z < 2.5 that logV2.2 =(2.18 +/-
0.051)+(0.193 +/- 0.108)(logM/Msun - 10) and infer an evolution of the
zeropoint of Delta M/Msun = -0.25 +/- 0.16 dex or Delta M/Msun = -0.39 +/- 0.21
dex compared to z = 0 when adopting a fixed slope of 0.29 or 1/4.5,
respectively. We also derive the alternative kinematic estimator S0.5, with a
best-fit relation logS0.5 =(2.06 +/- 0.032)+(0.211 +/- 0.086)(logM/Msun - 10),
and infer an evolution of Delta M/Msun= -0.45 +/- 0.13 dex compared to z < 1.2
if we adopt a fixed slope. We investigate and review various systematics,
ranging from PSF effects, projection effects, systematics related to stellar
mass derivation, selection biases and slope. We find that discrepancies between
the various literature values are reduced when taking these into account. Our
observations correspond well with the gradual evolution predicted by
semi-analytic models.Comment: 21 pages, 14 figures, 1 appendix. Accepted for publication by Apj,
February 28, 201
A detailed study of the diastereoselective catalytic hydrogenation of 6-hydroxytetrahydroisoquinoline-(3R)-carboxylic ester intermediates
A key step towards a highly-selective antagonist of ionotropic glutamate receptors entails the diastereoselective arene hydrogenation of an enantiopure tetrahydroisoquinoline. An extensive screen using parallel reactors was conducted and led to the discovery of several Pd/C catalysts giving high yield and improved diastereoselectivity from 75 : 25 to 95 : 5. A detailed kinetic study of the best system was performed and supports the reduction occuring in two-steps.
The Bright End of the z~9 and z~10 UV Luminosity Functions using all five CANDELS Fields
The deep, wide-area (~800-900 arcmin**2) near-infrared/WFC3/IR + Spitzer/IRAC
observations over the CANDELS fields have been a remarkable resource for
constraining the bright end of high redshift UV luminosity functions (LFs).
However, the lack of HST 1.05-micron observations over the CANDELS fields has
made it difficult to identify z~9-10 sources robustly, since such data are
needed to confirm the presence of an abrupt Lyman break at 1.2 microns. We
report here on the successful identification of many such z~9-10 sources from a
new HST program (z9-CANDELS) that targets the highest-probability z~9-10 galaxy
candidates with observations at 1.05 microns, to search for a robust
Lyman-break at 1.2 microns. The potential z~9-10 candidates are preselected
from the full HST, Spitzer/IRAC S-CANDELS observations, and the
deepest-available ground-based optical+near-infrared observations. We
identified 15 credible z~9-10 galaxies over the CANDELS fields. Nine of these
galaxies lie at z~9 and 5 are new identifications. Our targeted follow-up
strategy has proven to be very efficient in making use of scarce HST time to
secure a reliable sample of z~9-10 galaxies. Through extensive simulations, we
replicate the selection process for our sample (both the preselection and
follow-up) and use it to improve current estimates for the volume density of
bright z~9 and z~10 galaxies. The volume densities we find are 5(-2)(+3)x and
8(-3)(+9)x lower, respectively, than found at z~8. When compared with the
best-fit evolution (i.e., dlog_{10} rho(UV)/dz=-0.29+/-0.02) in the UV
luminosities densities from z~8 to z~4 integrated to 0.3L*(z=3) (-20 mag),
these luminosity densities are 2.6(-0.9)(+1.5)x and 2.2(-1.1)(+2.0)x lower,
respectively, than the extrapolated trends. Our new results are broadly
consistent with the "accelerated evolution" scenario at z>8, as seen in many
theoretical models.Comment: 23 pages, 15 figures, 7 tables, updated to match the version in
press, including some minor textual corrections identified at the proof stag
- …
