49 research outputs found

    Validation of Claims Data for Absorbing Pads as a Measure for Urinary Incontinence after Radical Prostatectomy, a National Cross-Sectional Analysis

    Get PDF
    The use of healthcare insurance claims data for urinary incontinence (UI) pads has the potential to serve as an objective measure for assessing post-radical prostatectomy UI rates, but its validity for this purpose has not been established. The aim of this study is to correlate claims data with Patient Reported Outcome Measures (PROMs) for UI pad use. Patients who underwent RP in the Netherlands between September 2019 and February 2020 were included. Incontinence was defined as the daily use of ≥1 pad(s). Claims data for UI pads at 12-15 months after RP were extracted from a nationwide healthcare insurance database in the Netherlands. Participating hospitals provided PROMS data. In total, 1624 patients underwent RP. Corresponding data of 845 patients was provided by nine participating hospitals, of which 416 patients were matched with complete PROMs data. Claims data and PROMs showed 31% and 45% post-RP UI (≥1 pads). UI according to claims data compared with PROMs had a sensitivity of 62%, specificity of 96%, PPV of 92%, NPV of 75% and accuracy of 81%. The agreement between both methods was moderate (κ = 0.60). Claims data for pads moderately align with PROMs in assessing post-prostatectomy urinary incontinence and could be considered as a conservative quality indicator.</p

    Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production

    Get PDF
    Fish larvae in aquaculture have high mortality rates due to pathogenic bacteria, especially the Vibrio species, and ineffective prophylactic strategies. Vaccination is not feasible in larvae and antibiotics have reduced efficacy against multidrug resistant bacteria. A novel approach to controlling Vibrio infections in aquaculture is needed. The potential of phage therapy to combat vibriosis in fish larvae production has not yet been examined. We describe the isolation and characterization of two bacteriophages capable of infecting pathogenic Vibrio and their application to prevent bacterial infection in fish larvae. Two groups of zebrafish larvae were infected with V. anguillarum (∼106 CFU mL-1) and one was later treated with a phage lysate (∼108 PFU mL-1). A third group was only added with phages. A fourth group received neither bacteria nor phages (fish control). Larvae mortality, after 72 h, in the infected and treated group was similar to normal levels and significantly lower than that of the infected but not treated group, indicating that phage treatment was effective. Thus, directly supplying phages to the culture water could be an effective and inexpensive approach toward reducing the negative impact of vibriosis in larviculture

    Eine verticillateValeriana officinalis

    No full text

    Mutation beiOenothera biennis L.

    No full text

    Gigas-Mutation mit und ohne Verdoppelung der Chromosomenzahl

    No full text

    SNM Radiation Signature Classification Using Different Semi-Supervised Machine Learning Models

    No full text
    The timely detection of special nuclear material (SNM) transfers between nuclear facilities is an important monitoring objective in nuclear nonproliferation. Persistent monitoring enabled by successful detection and characterization of radiological material movements could greatly enhance the nuclear nonproliferation mission in a range of applications. Supervised machine learning can be used to signal detections when material is present if a model is trained on sufficient volumes of labeled measurements. However, the nuclear monitoring data needed to train robust machine learning models can be costly to label since radiation spectra may require strict scrutiny for characterization. Therefore, this work investigates the application of semi-supervised learning to utilize both labeled and unlabeled data. As a demonstration experiment, radiation measurements from sodium iodide (NaI) detectors are provided by the Multi-Informatics for Nuclear Operating Scenarios (MINOS) venture at Oak Ridge National Laboratory (ORNL) as sample data. Anomalous measurements are identified using a method of statistical hypothesis testing. After background estimation, an energy-dependent spectroscopic analysis is used to characterize an anomaly based on its radiation signatures. In the absence of ground-truth information, a labeling heuristic provides data necessary for training and testing machine learning models. Supervised logistic regression serves as a baseline to compare three semi-supervised machine learning models: co-training, label propagation, and a convolutional neural network (CNN). In each case, the semi-supervised models outperform logistic regression, suggesting that unlabeled data can be valuable when training and demonstrating value in semi-supervised nonproliferation implementations
    corecore