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Abstract

Fish larvae in aquaculture have high mortality rates due to pathogenic bacteria,

especially the Vibrio species, and ineffective prophylactic strategies. Vaccination is

not feasible in larvae and antibiotics have reduced efficacy against multidrug

resistant bacteria. A novel approach to controlling Vibrio infections in aquaculture is

needed. The potential of phage therapy to combat vibriosis in fish larvae production

has not yet been examined. We describe the isolation and characterization of two

bacteriophages capable of infecting pathogenic Vibrio and their application to

prevent bacterial infection in fish larvae. Two groups of zebrafish larvae were

infected with V. anguillarum (,106 CFU mL21) and one was later treated with a

phage lysate (,108 PFU mL21). A third group was only added with phages. A

fourth group received neither bacteria nor phages (fish control). Larvae mortality,

after 72 h, in the infected and treated group was similar to normal levels and

significantly lower than that of the infected but not treated group, indicating that

phage treatment was effective. Thus, directly supplying phages to the culture water

could be an effective and inexpensive approach toward reducing the negative

impact of vibriosis in larviculture.

Introduction

Aquaculture industries frequently suffer heavy financial losses that threaten their

growth and sustainability, due mainly to uncontrolled microbial diseases [1, 2, 3].

Several factors may contribute to disease outbreaks, such as unfavorable
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environmental conditions, overfeeding, high water temperature, fast bacterial

growth, infrequent water renewal, and improper removal of wounded and dead

fish from the farming area.

Bacteria are the main pathogenic agents in the aquaculture industry. Vibriosis is

the primary disease of marine and estuarine fish in both natural and commercial

production systems throughout the world, but it may also occur in freshwater fish

[4, 5, 6, 7, 8, 9]. This bacterial infection causes significant mortality in fish, up to

100% mortality in infected facilities, and is responsible for most of the current

disease outbreaks in fish farming plants. Vibriosis is caused by species from the

genera Vibrio (i.e., V. anguillarum, V. vulnificus, V. alginolyticus, V. parahaemo-

lyticus and V. salmonicida) and Photobacterium (i.e., P. damselae subsp. damselae,

formerly Vibrio damselae) [5, 6].

The regular use of artificial feed supplemented with antibiotics in an effort to

prevent the spread of diseases and to control infections in aquaculture systems,

has resulted in the development of resistant strains that render antibiotic

treatments for infection ineffective. In fact, in the marine environment, most

(,90%) bacterial strains are resistant to more than one antibiotic and ,20% are

resistant to at least five antibiotics [10, 11]. The observed resistances limit the

applicability of antibiotics as treatment against marine pathogens. Although

commercial vaccines against vibriosis are available for fish, vaccination is not an

option for fish larvae as it is unfeasible to handle large numbers of these small-

sized and frail organisms. Moreover, fish larvae do not have the ability to develop

specific immunity [12], which provides an added advantage of reducing the

possibility of phage particle removal from the circulatory system by the host

defense system [13].

Alternative strategies must be developed to control fish diseases in aquaculture.

These strategies should reduce the risk of developing and spreading microbial

resistance, and be reasonably inexpensive and more environmentally friendly.

Phage therapy is a proven eco-friendly alternative approach to prevent and

control pathogenic bacteria in aquaculture [4, 14, 15, 16, 17, 18, 19, 20]. The use of

phages to prevent infection or to inactivate different fish pathogenic bacteria is

well documented [15, 18, 21, 22, 23, 24, 25]. Experimental results with marine

animal models have demonstrated the therapeutic efficacy of phage therapy

against infectious diseases caused by Pseudomonas aeruginosa, Photobacterium

damselae subsp. piscicida, Enterococcus seriolicida, Aeromonas salmonicida, Vibrio

harveyi, Vibrio parahaemolyticus, Vibrio anguillarum, Pseudomonas plecoglossicida,

and Lactococcus garvieae [4, 14, 15, 16, 17, 18, 19, 20]. Some animal models include

the yellowtail (Seriola quinqueradiata), larval stages of shrimp (Penaeus monodon),

Ayu (Plecoglossus altivelis), Atlantic salmon (Salmo salar), rainbow trout

(Oncorhynchus mykiss), seabass (Dicentrarchus labrax), and seabream (Sparus

aurata) [4, 14, 15, 16, 17, 18, 19, 20].

Selection of the appropriate bacteriophage, the stage of life (eggs, larvae,

juveniles, or adult fish) during which phage therapy is applied and the method of

phage delivery are key factors in the success of the treatment.
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The success of phage therapy to control pathogenic bacteria of fish depends on

virus survival in aquaculture water and their ability to inactivate a broad range of

fish pathogens. The phage burst size (number of phages produce by each host cell)

and the latent period (time elapsed from virus entry into the cell until the first

progeny are released) are also important factors to consider when phages are

selected. Phages with high burst sizes and short latent periods are more effective to

inactivate bacteria; however, great burst sizes are associated with a long latent

period [26] which makes the selection for phage therapy difficult.

In aquaculture, phage therapy can be applied as a preventive approach against

bacterial infections during larvae production, before releasing them in the

aquaculture tanks, thereby improving the overall production of adult fish and the

sustainability of fish farming. During the intensive rearing of marine larvae,

various forms of interactions between bacteria and biologic surfaces may occur

[27], resulting in the formation of indigenous microbiota that can be beneficial or

pathogenic for the animal. In aquaculture, fish larvae are maintained in

incubators with hatching eggs and debris, resulting in a 1000-fold increase in

bacterial counts of the culture water throughout hatching [28]. Marine fish larvae

begin drinking before the yolk sac is consumed and thus bacteria enter the

digestive tract before active feeding starts [27]. Older larvae may also ingest

bacteria by grazing on suspended particles and egg debris [29, 30, 31].

In larval cultures, phages can be supplied in the feed, using infected bacteria as a

vehicle or by direct release into the culture water [1, 15]. The use of bacteria

infected with phages as carriers can be seen as a protective method to insure that

phage particles are delivered directly to the organ infected without suffering any

damage. However, Nakai et al (1999) demonstrated that this strategy did not

enhance the protective effect. When they administrated Lactococcus garvieae

infected with phages to treat the infection, the curative effect of the phage was not

influenced, but the results did not differ from those when phages were directly

administrated. The later strategy is inexpensive, flexible, and requires no specific

equipment, but the antimicrobial effects are assumed to depend on phage stability

in the medium and their ability to arrive at the infected tissues (i.e., intestine) by

passive diffusion. Consequently, to develop an effective, safe and controlled phage

therapy protocol to be used in larviculture, detailed information is needed on the

properties and behavior of the selected phage. The host range of the phage, the

phage time of permanence in the water, its latent period, the burst size, lytic

potential, its avoidance of lysogenic induction and conversion, and the potential

development of host resistance are crucial factors that must be considered.

The aim of the present study was to test the efficacy of phage therapy during the

production of fish larvae (Zebrafish - Danio rerio) experimentally exposed to V.

anguillarum. This bacterium was selected as a model species due to its ability to

infect a large number of cultured fish species [4, 5]. A phage isolated on V.

parahaemolyticus (VP-2) was used in the phage therapy experiments, as

preliminary trials revealed that this phage was more efficiently inactivated V.

anguillarum than the phage isolated on V. anguillarum (VA-1). Zebrafish was used
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as a biologic model system because it is a well understood, easily observable, and

testable organism [32].

Experimental Procedures

Ethics Statement

Sewage water was collected in the EEIS9 lift station of the Aveiro Network Sewage

(Portugal) with the permission of Sistema Multimunicipal de Saneamento da Ria

de Aveiro (SIMRIA). (http://www.simria.pt/index.php). The field studies were

done with permission of the fish farm Corte das Freiras of Aveiro (Portugal)

(https://www.racius.com/corte-das-freiras-aquicultura-lda/).

The in-vivo studies were carried out in strict accordance with the

recommendations of European Commission (2003/65/CE and 2007/526/CE) and

the Spanish legislation (RD 1201/2005). Protocols were designed to comply with

the European policy on the ‘‘3 Rs’’(Reduce, Refine, and Replace) in animal

experimentation. All of the protocols used for the challenges were supervised by a

Food Research Division AZTI-Tecnalia veterinarian and approved by the ethics

committee of the competent authority (Animal Experimentation Ethical

Committee, Bizkaiko Foru Aldundia - Diputación Foral de Bizkaia). Embryos

were collected directly from the breeding tanks shortly after fertilization and

stored up to the test in optimal conditions. Larvae were not intentionally

sacrificed during the experiment, and final sacrifice was done according with the

standard procedures, using cold treatment.

Bacterial Strains

Three bacterial strains, Vibrio parahaemolyticus, Vibrio anguillarum, and

Aeromonas salmonicida, previously isolated from the aquaculture system Corte das

Freiras in Ria de Aveiro (an estuarine system located in the north-western coast of

Portugal - 80449W, 409399N) were used in this study [33, 34]. The other 7 strains

used in this study were obtained either from the American Type Culture

Collection (ATCC): Photobacterium damselae subsp. damselae (ATCC 33539),

Photobacterium damselae subsp. piscicida (ATCC 29690), Vibrio fischeri (ATCC

49387), Aeromonas hydrophila (ATCC 7966), or previously isolated from Ria de

Aveiro: Pseudomonas aeruginosa, Pseudomonas fluorescens and Pseudomonas

putida, [35].

Bacteria and Phage Culture and Titration

Except when annotated, bacteria were plated on Tryptic Soy Agar (TSA; Merck,

Darmstadt, Germany) medium and incubated for 24 h at 25 C̊. Fresh cultures of

the host strains, Vibrio parahaemolyticus, Vibrio anguillarum, were maintained on

TSA at 4 C̊. When necessary, bacteria were grown in Tryptic Soy Broth (TSB;

Merck, Darmstadt, Germany) overnight at 25 C̊ (O.D.600 of 0.8, corresponding to

about 109 CFU mL21).
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The phage titer was determined using the double agar layer method, with TSA

as base agar and soft TSA (0.6% agarose) as soft agar. Bacteria were incubated for

12 h at 25 C̊. The spot test was used to study bacterial susceptibility, using TSA as

the culture medium [36]. An aliquot of 30 mL of the phage lysate was placed onto

the surface of the bacterial overlay and the occurrence of lytic plaques was verified

after 12 h of incubation at 25 C̊.

Phage Isolation and Purification

Sewage water from a lift station of the sewage network of Aveiro, Portugal (station

EEIS9 of SIMRIA Multi Sanitation System of Ria de Aveiro) was filtered through

0.45 mm pore size polycarbonate membranes (Millipore, Bedford, MA, USA). The

filtrate was added to double-concentrated TSB medium with 1 mL of fresh culture

of the host, V. parahaemolyticus and V. anguillarum, to produce V. para-

haemolyticus and V. anguillarum phages. The mixtures were incubated at 25 C̊ for

18 h at 80 rpm, and then filtered through a 0.2 mm membrane (Millipore).

Chloroform (final volume of 1%) was added to the supernatants and phage

concentration was determined as described before. Plates were incubated at 25 C̊

and examined for the presence of lytic plaques after 12 h.

One single plaque was removed from the agar, diluted in TSB, and then

chloroform (final volume of 1%) was added to eliminate bacteria. The sample was

centrifuged and the supernatant was used as a phage source for a second isolation

procedure. Three successive single-plaque isolation cycles were performed to

obtain pure phage stocks for both bacteria. All lysates were centrifuged at 10,000 g

for 10 min at 4 C̊, to remove intact bacteria or bacterial debris. The phage stock

was stored at 4 C̊ and 1% chloroform (final volume) was added. The phage

produced on V. parahaemolyticus was designated as VP-2 and the phage produced

on V. anguillarum as VA-1.

Phage Host Range Determination

Bacterial susceptibility to both bacteriophages was assayed for the 10 pathogenic

bacterial strains (Table 1). The hosts tested included species from genera Vibrio,

Aeromonas, Photobacterium and Pseudomonas that include the main pathogenic

bacteria of fish [34, 37]. The spot test was used as an initial approach for the

detection of bacterial infection [36] and the efficiency of plating was determined

for the bacteria with positive spot tests (occurrence of lytic plaques) by the

double-layer agar method. The plating efficiency for each host was calculated by

comparison with an efficacy of 100% for the phages, VP-2 and VA-1, using V.

parahaemolyticus and V. anguillarum as hosts, respectively. Three independent

experiments were performed for each phage.

Phage Nucleic Acid Isolation

Bacteriophage lysates (109 plaque forming units, PFU mL21) were centrifuged 3

times at 6000 g for 10 min. The phage lysates were ultracentrifuged at 100000 g
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for 2 h at 10 C̊. Five hundred microliters of SM buffer were added to the pellet

and was let to rest for 2 h. The suspension was then treated with DNase I and

RNase A at 37 C̊ for 20 min to remove any free nucleic acids contamination.

Nucleic acid extraction from phage particles was performed as described by

Griffiths et al. [38]. Extraction was performed by the addition of 0.5 mL of

hexadecyltrimethylammonium bromide (Sigma Aldrich, St. Louis, MO, USA)

extraction buffer and 0.5 mL of phenol-chloroform-isoamyl alcohol (25:24:1;

pH 8.0; Sigma Aldrich) to the sample. The sample was lysed for 30 s in a FastPrep

FP120 (BIO 101/Savant) at 5.5 ms21 and centrifuged (16,000 g) for 5 min at 4 C̊.

The supernatant was pipetted into a clean vial, mixed 1:1 with chloroform-

isoamyl alcohol (Sigma Aldrich) and centrifuged (16,000 g) for 5 min at 4 C̊. The

supernatant was removed to a clean tube and the nucleic acids were precipitated

with two volumes of 30% (wt/v) polyethylene glycol 6000 – 1.6 M NaCl for 2 h at

25 C̊. This mixture was centrifuged (18,000 g) at 4 C̊ for 10 min, the pellet

washed in ice cold 70% (v/v) ethanol, centrifuged (18.000 g) at 4 C̊ for 10 min

and then the pellet was air dried prior to re-suspension in 30 mL Tris-EDTA

buffer. Nucleic acid yield was quantified in the Qubit 2.0 Fluorometer (Invitrogen,

Carlsbad, CA, USA). The nucleic acid was then digested with DNase I (Ambion,

Austin, TX, USA), and RNase I (Sigma Aldrich) separately, as described by the

manufacturers. DNase I was inactivated by heating at 80 C̊ for 5 min whereas

RNase A was inactivated by EDTA (final concentration 20 mM) and Proteinase K

(final concentration of 50 mg mL21; Bioron) addition and incubation at 56 C̊ for

1 h. Five microliters of nucleic acids of each reaction was then loaded onto a

agarose gel and separated by electrophoresis (0.8% agarose gel electrophoresis at

80 V for 45 min), using XXL DNA Ladder GeneOn (25 kb DNA ladder) as

marker and observed in a Molecular Imager (Chemi Doc XRS+, BioRad, Hercules,

CA, USA). To determine whether phages VP-2 and VA-1 are single or double-

stranded DNA viruses, 10 ng of DNA was incubated with 20 U of S1nuclease

(MBI Fermentas, Portugal) at 37 C̊ for 1 h as described by Sambrook et al [39].

The resulting product was electrophoresed through 0.8% agarose gel at 80 V for

40 min.

Table 1. Efficiency of plating (%) of phages VP-2 and VA-1 on different bacteria.

Bacteria Efficacy of plating (%)

VP-2 VA-1

V. parahaemolyticus 100 73.2

V. anguillarum 93.4 100

A. salmonicida 92 88.8

doi:10.1371/journal.pone.0114197.t001
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Phage Survival Determination

Phage survival was tested in marine water collected on three different dates, in

February, March, and May 2013, at the Aquaculture Corte das Freiras (Aveiro,

Portugal). At each date, 50 mL of water (salinity 18–21 practical salinity units;

pH 7.6–7.7) was filtered sequentially through 0.45-mm and 0.22-mm pore-size

membranes (Millipore) and then sterilized in an autoclave (121 C̊ for 20 min).

Phage lysates were added (estimated final concentration 107 PFU mL21) and

incubated at 25 C̊ without shaking. The phage titer was determined as described

above, at time zero and at intervals of 12 h until day 1, 24 h until day 5, 48 h until

day 9, 72 h until day 12, 120 h until day 45, and 240 h until the end of the

experiment (day 185). Three independent experiments were performed for each

phage.

One-Step Growth Assays

The one-step growth curves of phages VP-2 (on V. parahaemolyticus and on V.

anguillarum) and VA-1 (on V. anguillarum) were performed according to the

method of Almeida [40]. Briefly, mid-exponential host bacterial cultures of V.

parahaemolyticus and V. anguillarum were adjusted to an optical density51 at

600 nm (,109 CFU mL21) and 10 mL phage lysate was added to 10 mL bacterial

culture (multiplicity of infection - MOI of 0.001). Phages were allowed to adsorb

for 5 min at room temperature and the mixture was centrifuged (10,000 g for

5 min). The pellet was re-suspended in 10 mL TSB at 25 C̊ and serially diluted to

1024. Samples (1 mL) were obtained at 10 to 20 min intervals and the phage

titration was done by the double agar layer method. The burst size (number of

phages produced by infected bacteria) was determined dividing the average

number of lysis plaques at the stationary phase by the average number of lysis

plaques at the latent phase.

Phage Therapy Assays

Preliminary studies of phage therapy were performed to select the best phage to

inactivate V. anguillarum. VP-2 and VA-1 phages were tested using their natural

bacteria as host, V. parahaemolyticus and V. anguillarum, respectively. The phage

VP-2 was also tested on V. anguillarum.

Killing curves

Optimal MOI was determined using VP-2 phage on its natural host, V.

parahaemolyticus. Tested MOI were 1, 10, 100, and 1000 using an overnight V.

parahaemolyticus culture with 105 CFU mL21 and a set of serial dilutions of the

phage lysate (106 to 108 PFU mL21). Bacteria and phage were inoculated in TSB

(final volume 50 mL) and incubated at 25 C̊ without agitation (test samples). For

each MOI, two control samples were included, the bacterial control and the phage

control, respectively, without phages and without bacteria. Both controls were

incubated exactly as the test samples. Aliquots were removed at the indicated
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sampling time (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 24, and 36 h) and bacteria and

phages were counted as described before. Three independent experiments were

performed for each MOI and the results were averaged.

Phage therapy experiments with phages VA-1 and VP-2 using V. anguillarum as

the host were performed only at MOI 100 under the previously described

conditions.

Prophage Detection in Host Bacteria Before and After Phage Therapy

To assess lysogeny among the isolated bacteria and to check for the occurrence of

lysogenic induction after phage therapy, the mitomycin C (a known agent of

prophage induction) test was applied. To detect if the natural bacteria can

harbour prophages in their genome, fresh bacterial cultures of V. parahaemo-

lyticus and V. anguillarum were used. To detect if phage-treated bacteria can

incorporate the phages in their DNA, bacteria/phages suspensions (V.

parahaemolyticus/VP-2 and V. anguillarum/VP-2 and V. anguillarum/VA-1), at a

MOI of 100, were collected after 48 h of incubation at 25 C̊ were used. The

bacterial cultures were centrifuged at 12,000 g for 10 min to collect the pellet of

bacteria and remove free phages. The pellets were resuspended in fresh TSB

medium. Each bacterial culture was then split equally into two Eppendorf

microtubes (1 ml in each): one was added of mitomycin C (final concentration,

1 mg mL21, Sigma-Aldrich) and the other was used as control (no added of

mitomycin C). The cultures were incubated overnight at 25 C̊ without shaking

and then centrifuged (10,000 g, 10 min) (ThermoHeraeus Pico, Hanau,

Germany) Supernatants were checked for the presence of phages by the spot test.

The absence of a clear zone after inducing stress indicates that the bacteria

contained no prophages in their genome. Three independent assays were

performed for each condition.

Determination of phage-resistant mutants

A V. anguillarum culture (final concentration 105 CFU mL21) and a phage lysate

(final concentration 107 PFU mL21) were inoculated in TSB and incubated at

25 C̊ without agitation for 24 hours (test sample). One control sample was

included, the bacterial control, without phages, and was incubated exactly as the

test sample. Aliquots of experimental samples and control were removed and

plated by incorporation on TSA plates. Plates were incubated at 25 C̊ for 24 h. To

determine the mutation frequencies per cell per generation, ten isolated colonies

were picked out from the TSA plates of the test sample, inoculated into ten tubes

with TSB, grown with agitation until approximate concentration of

109 CFU mL21 and ten-fold serially diluted to 1026. One millilitre of each

dilution was plating, in triplicate, on TSA plates which were incubated at 25 C̊ for

six days (because some of the phage-resistant mutants grow very slowly).

Simultaneously, an aliquot of the control sample was serially diluted to 1026 and

1 mL of dilutions 1025, 1026 and 1027 and plated, in triplicate, on TSA plates. To

calculate mutation frequencies, mean numbers of mutants in one ml of test

samples were divided by mean total numbers of control samples [41].
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Phage Therapy in Zebrafish Larvae

As previously stated, all of the protocols used for the challenges were supervised

by a veterinarian and approved by the ethics committee to comply with the

European policy on the ‘‘3 Rs’’, to obtain reliable scientific information using the

lowest number of animals possible.

Zebrafish (Danio rerio) larvae were selected as model organisms for testing the

efficacy of phage therapy against Vibrio infections. Due to its low salt requirement

for growth and the success in previous experiences infecting zebrafish [42], V.

anguillarum was selected as the candidate to infect zebrafish larvae. Bacteria were

grown in TSB overnight and diluted 1:5 in fresh TSB. After 30 min at 27 C̊, cells

were centrifuged and washed twice with SEW (CaCl2 66.2 mM, MgSO4*7H2O

13.4 mM, NaHCO3 21 mM, KCl 3.8 mM, and NaCl 0.5%, all from Merck). The

bacterial suspension was adjusted to ,107 CFU mL21 with SEW. Four groups of

zebrafish larvae at 5 d post-fecundation, with each group comprising 3 sets of 20

specimens, were selected by haphazard sampling for the present study (a total of 4

groups 63 sets of 20 specimens each5240 larvae were used). Each set of 20

specimens of the 4 groups was treated separately, corresponding to 3 independent

samples per condition. The 3 sets of the first group were infected with V.

anguillarum and treated with VP-2 phage (test group, larvae+Vibrio+phages), the

3 sets of the second group were infected with the bacterium but not treated with

the phage (bacterium control, larvae+Vibrio), and the 3 sets of the third group

were not infected with the bacterium but phages were added (phage control,

larvae+phages). To the 3 sets of the fourth group neither bacteria nor phages were

added (fish control). Each set of larvae was suspended in 3.0 mL SEW prior to

inoculation (if they were inoculated). When required (test group and bacterium

control), 250 mL bacterial culture was added (final concentration of

106 CFU mL21) and all groups were incubated at 27 C̊ with shaking (160 rpm).

One hour after infection, 200 mL phage solution of VP-2 (,108 PFU mL21) was

added (MOI 100, test group and phage control). Samples were incubated at 27 C̊

with shaking (160 rpm) and samples were obtained at 1, 5, 24, 48, and 72 h post

infection. Control groups were treated the same way, but instead of phage lysate,

200 mL (phage control), 250 mL (bacterium control), or 450 mL (no-treated

group) of SEW were added. Fish mortality in each of the 3 sets of the 4 groups was

determined by visual inspection of all fish (inspecting for dead fish) every 24 h.

Bacterial and phage concentration was determined as described before.

Statistical Analysis

Statistical analysis was performed using SPSS (SPSS 20.0 for Windows, SPSS Inc.,

Chicago, IL, USA). Significant differences among the different MOI tested using

the phage VP-2 and the host V. parahaemolyticus and between both phages VA-1

and VP-2 using V. anguillarum as host were assessed by one-way analysis of

variance model with the Bonferroni post-hoc test. The significance of differences

was ascertained by comparing the results obtained in the test samples after

correction with the result obtained for the corresponding control samples
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(difference between the concentration obtained in the control and the

concentration obtained in the test sample) for the different times of each of the

three independent assays. Significant differences between samples of larvae fish

experiments were also determined. The groups infected with V. anguillarum

treated with phage were compared with the non–treated infected fish (samples

with bacteria but without phages) and with the controls (samples with phages but

without bacteria and samples without bacteria and without phages. Normal

distributions were assessed using the Kolmogorov-Smirnov test and homogeneity

of variances was assessed by Levene’s test. A value of p,0.05 was considered

statistically significant.

Results

Presence of Prophages in the Bacterial Host

No phages were detected in the supernatant of cultures of V. anguillarum and V.

parahaemolyticus or in the mixture of bacteria and phages after treatment with

mitomycin C, demonstrating the absence of inducible prophages in the two

strains. Phages presented lytic cycles with no evidence of lysogeny induction.

However, more specific tests, such as search of integrase genes to evaluate the

development of lysogeny are needed.

Phage Host Range

Phage VP-2 infected V. anguillarum and A. salmonicida with an efficiency of 93%

and 92% respectively, but was not effective against A. hydrophila, P. damselae

subsp. damselae, P. damselae subsp. piscicida, V. fischeri, P. aeruginosa, P.

fluorescens or P. putida. (Table 1). Phage VA-1 infected V. parahaemolyticus and

A. salmonicida with an efficiency of approximately 73% and 89%, respectively, but

was not effective against the other tested strains (Table 1). The lysis plaques of

phages VP-2 and of VA-1 were clear with a diameter of about 2.0 mm.

VP-2 and VA-1 Phage Characterization

Nucleic Acid Characterization

Nucleic acid lysates with 357 ng mL21 and 210 ng mL21, respectively for phages

VP-2 and VA-1 were obtained. Enzyme digestion with DNase I and RNase A

revealed that both phages are DNA phages (Figure 1A). Analysis of the enzyme

digestion with S1 Nuclease revealed that phages VP-2 and VA-1 were double-

stranded DNA viruses (Figure 1B).

Phage Survival

Phage survival experiments performed in marine water from an aquaculture

facility collected at three different sampling times revealed that the VP-2 phage

remained viable for approximately 6 months. Phage abundance decreased by one

order of magnitude on the first day, reaching a plateau over the next 12 days.
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Figure 1. Phage DNA following digestion with DNase I and RNase A (5 mL loaded) (A), Lane M: XXL
DNA Ladder GeneOn; Lane 1: uncut VP-2 phage nucleic acid; Lane 2: DNase I digested VP-2 phage
nucleic acid; Lane 3: RNase A digested VP-2 phage nucleic acid; Lane 4: uncut VA-1 phage nucleic
acid; Lane 5: DNase I digested VA-1 phage nucleic acid; Lane 6: RNase A digested VA-1 phage nucleic
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Afterwards, the phage titer decreased slightly until day 35 and then more rapidly

to day 195 (Figure 2).

Burst Size and Latent Period

The VP-2 phage one-step growth experiments revealed that lysis occurred after

90 min of incubation when using V. parahaemolyticus as the host. Each infected

bacterium produced approximately 15 phages (Figure 3). Phage VP-2 one-step

growth experiments performed using V. anguillarum as the phage host revealed

that lysis occurred at 100 min and that each infected bacterium produced an

average of 10 phages (Figure 3). When the phage one-step growth experiments

were performed using the VA-1 phage on V. anguillarum, lysis occurred at

100 min and each infected bacterium produced an average of 6 phages (Figure 3).

Kill Curves

VP-2 Phage on V. parahaemolyticus

At a multiplicity of infection (MOI) of 1, the maximum bacterial inactivation was

3.0 log colony-forming units (CFU) per mL achieved after 6 h of phage therapy.

Phage therapy efficiency at MOI 1 was significantly lower than that observed at

MOI 10, 100, and 1000 (p,0.05) at the different times (Figure 4A). Increasing the

MOI to a value of 10 enhanced the maximum rate of inactivation to 3.6 log

CFU mL21 after 8 h of incubation. After 6 h, the inactivation rate was already 3.4

log CFU mL21 and was, in general, significantly different from that observed for

Figure 2. VP-2 and VA-1 phage survival in aquaculture marine water. Both phages had an initial
concentration of 7 log PFU mL21. Values represent the mean of three independent experiments; error bars
(overlapped by symbols) represent the standard deviation.

doi:10.1371/journal.pone.0114197.g002

acid. Agarose gel (0.8%) showing electrophoretic patterns of S1 Nuclease restriction digestion of phage
DNA(B). Lane M: XXL DNA Ladder GeneOn; Lane 1: VP-2 DNA and Lane 2: VA-1 DNA. ND – Not
determined.

doi:10.1371/journal.pone.0114197.g001
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MOI 100 and 1000 (p,0.05). At a MOI of 100, the highest inactivation rate (4.1

log CFU mL21) was achieved after 8 h of phage therapy, and after 6 h it was 3.7

log CFU mL21. At the highest MOI value (1000), the maximum value of

inactivation was 4.7 log CFU mL21 after 10 h of phage therapy and 4.0 log

CFU mL21 after 6 h. Phage inactivation at MOI 100 was only different from that

of MOI 1000 after 6 h of phage therapy (p,0.05; Figure 4A).

No decrease in phage survival was observed during the 36 h of the experiments

for the VP-2 phage alone and for the phage in the presence of its host (Figure 4B).

While the phage alone remained almost constant throughout (p.0.05), a

significant increase (p,0.05) in 1.0 log PFU mL21 was observed for the MOI of 1

(p,0.05) after 36 h when the phage was incubated in the presence of its host.

Increasing the MOI to 10 also significantly increased the rate of phage survival by

0.6 log PFU mL21 after the same period of time (p,0.05). For the highest MOI

values (100 and 1000), only a slight increase in phage survival (less than 0.3 log

PFU mL21) was recorded (p.0.05; Figure 4B).

VP-2 Phage on V. anguillarum

At a MOI of 100, the maximum bacterial inactivation was 5.0 log CFU mL21

achieved after 8 h of phage therapy. After 6 h of incubation, however, the rate of

inactivation was already 3.8 log CFU mL21 (p,0.05; Figure 5A). No decrease in

phage survival was observed during the 24 h of the experiment for the VP-2 phage

alone or in presence of V. anguillarum as the host (Figure 5B). While the phage

control remained nearly constant over time (p.0.05), a significant increase

(p,0.05) of 1.9 log PFU mL21 was observed when the phage was incubated in the

presence of its host (p,0.05; Figure 5B).

Figure 3. VP-2 and VA-1 phage one-step growth experiment in the presence of V. parahaemolyticus
and V. anguillarum as hosts. PFU per mL are shown at different time points. Values represent the mean of
three independent experiments; error bars represent the standard deviation.

doi:10.1371/journal.pone.0114197.g003
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Figure 4. Inactivation of V. parahaemolyticus by the VP-2 phage at different MOI values (1, 10, 100 and 1000) during the 36 h experiment. Bacteria
and phage were inoculated in TSB and incubated at 25˚C. For each MOI, two control samples were included, the bacterial control and the phage control,
respectively, without phages and without bacteria. Both controls were incubated exactly as the test samples. (A) Bacterial concentration (Log CFU mL21):
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VA-1 Phage on V. anguillarum

The maximum rate of bacterial inactivation was 3.9 log CFU mL21 achieved after

6 h of phage therapy, at a MOI of 100 (p,0.05). At 8 h of phage therapy, the

inactivation rate remained quite high (2.5 log CFU mL21; Figure 6A).

No decrease in phage survival occurred during the experiment for either the

VA-1 phage alone or the phage in the presence of V. anguillarum as a host

(Figure 6B). While phage control remained nearly constant during the entire

testing period (p.0.05), a significant increase (p,0.05) of 1.4 log PFU mL21 was

observed when the phage was incubated in the presence of its host after 24 h of

phage therapy (p,0.05; Figure 6B).

Frequency of phage-resistant mutants

The frequency of emergence of resistant mutants was 8.461024 (Table 2).

Mutant colonies were visible only after 48 h but in the control sample colonies

were observed after 24 h. The number of colonies after 48 and 24 h, in the sample

and in the control, respectively, was constant up to 6 days.

Phage Therapy in Infected Larvae

After 72 h, the group infected with V. anguillarum treated with phage had

mortality rates similar (p.0.05) to those of fish control and the group treated

BC – Bacterial control; BP – Bacteria plus phage. (B) Phage concentration (PFU mL21): PC – Phage control, and PB – Phage plus bacteria. Values
represent the mean of three independent experiments; error bars represent the standard deviation.

doi:10.1371/journal.pone.0114197.g004

Figure 5. Inactivation of V. anguillarum by the VP-2 phage at a MOI of 100 during the 24 h experiment. Bacteria and phage were inoculated in TSB and
incubated at 25˚C. Phage and bacteria, had an initial concentration of 107 PFU mL21 and 105 CFU mL21. For each MOI, two control samples were
included, the bacterial control and the phage control, respectively, without phages and without bacteria. Both controls were incubated exactly as the test
samples. (A) Bacterial concentration (Log CFU mL21): BC – Bacterial control; BP – Bacteria plus phage. (B) Phage concentration (PFU mL21): PC – Phage
control, and PB – Phage plus bacteria. Values represent the mean of three independent experiments; error bars represent the standard deviation.

doi:10.1371/journal.pone.0114197.g005
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with only the phage but without exposure to Vibrio (mean below 3%, Table 3).

The mortality rate was much lower (p,0.05) than that observed for the non–

treated infected fish (17%; Table 3). The larvae that were exposed to only phage

were not affected during the experiment.

Bacterial concentrations in infected and treated larvae group samples increased

until 24 h of incubation but after 48 h decreased by ,1.5 log CFU mL21. At 72 h,

the number of bacteria increased, reaching values similar to those observed at the

beginning of the experiment, but there was a clear shift in the colony type on the

TSA medium. The colonies detected at 24, 48 and 72 h were not consistent with

the Vibrio style colonies on TSA. The pattern of variation of the bacterial

concentrations in samples corresponding to fish larvae infected with bacteria but

not treated with phage was similar to that of the infected and treated samples

(Table 4). The number of bacteria in the samples of the phage control group and

in the fish control samples increased by 6 log CFU mL21 during the experiment,

Figure 6. Inactivation of V. anguillarum by the VA-1 phage at a MOI of 100 during the 24-h experiment. Bacteria and phage were inoculated in TSB
(final volume 50 mL) and incubated at 25˚C. Phage and bacteria, had an initial concentration of 107 PFU mL21 and 105 CFU mL21. For each MOI, two
control samples were included, the bacterial control and the phage control, respectively, without phages and without bacteria. Both controls were incubated
exactly as the test samples. (A) Bacterial concentration (Log CFU mL-1): BC – Bacterial control; BP – Bacteria plus phage. (B) Phage concentration: PC –
Phage control, and PB – Phage plus bacteria. Values represent the mean of three independent experiments; error bars represent the standard deviation.

doi:10.1371/journal.pone.0114197.g006

Table 2. Frequencies of V. anguillarum spontaneous VP-2 phage-resistant mutants.

Control sample (CFU mL21) Sample treated with phages (CFU mL21) Frequency of mutants

Days of incubation

1 2.64¡0.476108 0 0

2 2.64¡0.406108 2.28¡0.126105 8.4061024

3 2.64¡0.406108 2.22¡0.166105 8.3561024

4 2.75¡0.386108 2.22¡0.166105 8.2061024

5 2.99¡0.746108 2.17¡0.176105 8.1761024

6 2.76¡0.276108 2.39¡0.326105 8.1161024

doi:10.1371/journal.pone.0114197.t002
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reaching values similar to those obtained in the infected and treated samples and

in the bacterial control samples (Table 4).

Discussion

In recent years, the potential of phage therapy to control bacterial infections in

aquaculture has generated great expectations [4, 14, 15, 16, 17, 18, 19, 20]. To

permit its commercial application, however, an accurate evaluation of this

approach is needed for the development of effective, safe, and controlled

protocols. Although studies have addressed the use of phages to control vibriosis

in aquaculture [4, 5, 20], the present study is the first to examine the potential to

control vibriosis in fish larvae production. The selection of the appropriate

bacteriophage, the phage delivery method, and the life stage (eggs, larvae,

juveniles, or adult fish) during which phage therapy is applied are key factors in

the success of phage-mediated control of Vibrio in aquaculture.

The criteria required to select phages for phage therapy in aquaculture include

i) host range; ii) latent period; iii) burst size; iv) survival in the environment; and

Table 3. Fish mortality after 72 h of treatment at 27˚C.

Sample Mortality

Assay 1 Assay 2 Assay 3 Sum of all assays
Average percentage of all
assays

(n520) (n520) (n520) (n560) (n560)

Vibrio+phage 0 0 1 1 2¡3a

Vibrio 3 4 3 10 17¡3a,b

Phage 0 0 0 0 0b

Control (non-Vibrio and non-
phages)

0 1 1 2 3¡3b

Values represent the Mean ¡ Standard Deviation of three samples.
asignificant difference with Vibrio samples (samples with bacteria but without phages),
bsignificant difference with phage samples (with phages but without bacteria) and with control samples (non-Vibrio and non-phages) (p,0.05).

doi:10.1371/journal.pone.0114197.t003

Table 4. Concentration (CFU mL21) of viable bacteria during the 72 h experiment.

Time (h)

Conditions 0 1 5 24 48 72

Vibrio+phage 3,55¡0,06106 6,69¡0,766106 3,44¡0,476107 8,06¡1,146107 2,75¡0,06106 1,55¡0,526106

Vibrio 3,55¡0,06106 6,64¡1,816106 1,52¡0,176107 1,46¡0,326107 3,89¡0,06106 1,93¡1,276106

Phage 0 ,3,16¡0,06102 .1,00¡0,06102 3,72¡0,126107 ND 8,50¡0,466105

Fish Control
(No phage or
bacterial cells
added

0 ,3,16¡0,06102 .1,00¡0,06102 3,82¡0,06105 6,03¡0,06105 8,82¡0,436105

ND – Not determined. Values represent the Mean ¡ Standard Deviation of three samples.
NOTE: After 48 h, there is a shift in the major bacterial type, with the new colony types not matching Vibrio colonies.

doi:10.1371/journal.pone.0114197.t004
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v) efficiency of bacterial inactivation. The two dsDNA phages tested in this study

(isolated on V. parahaemolyticus and on V. anguillarum): i) infect the same three

hosts (V. parahaemolyticus, V. anguillarum, and A. salmonicida), presenting high

efficiency to inactivate the both pathogenic Vibrio species tested; ii) present long

periods of survival in marine aquaculture water; and iii) have similar latent

periods and burst sizes. Nonetheless, phage VP-2 showed a higher efficiency to

inactivate V. anguillarum than phage VA-1 (maximum of V. anguillarum

inactivation of 5.0 log CFU mL21 for VP-2 and of 3.9 log CFU mL21 for VA-1),

even higher than that obtained when this phage was used to inactivate its own

host (V. parahaemolyticus; 4.2 log CFU mL21 maximum inactivation).

The results of this study strongly suggest that the VP-2 phage can protect fish

larvae against Vibrio infections. Although infecting fish with V. anguillarum in the

absence of the phage resulted in low fish mortality (17%), the survival of infected

fish larvae in the presence of the phage increased significantly, reaching values

similar to those obtained in the control treatment (fish control). Addition of the

phage lysate to the fish larvae without bacterial challenge did not decrease larvae

fish survival. The mortality in this group was similar to that of controls (fish

control). Although phage VP-2 produced no observable effects in larval fish

(morphological alterations or mortality), it is necessary to evaluate this phage

(whole genome sequencing) for the presence of genes encoding toxins and

antibiotic resistance. The phage lysate could also potentially contain residual

bacterial antigens or endotoxins [39]. In this study, fish larvae experimentally

treated only with the phage preparation (phage lysate at ,109 PFU mL-1 diluted

10-fold) did not show any negative effect on fish health, therefore, it is likely that

the VP-2 phage lysate has few or no toxins. Moreover, as infecting fish with V.

anguillarum in the absence of the phage resulted in low fish mortality (17%),

future experiments using several concentrations of bacteria at a MOI of 100 in

order to get a higher fish killing rate or to reach a plateau, would be very useful to

confirm the potential of phage therapy to inactivate pathogenic bacteria in fish.

Phage VP-2 significantly improved the survival of larval fish infected with V.

anguillarum, but killing curves assays demonstrated that, 8 h after phage addition,

some bacteria remained viable and could regrow, as reported in previous studies

[43, 36]. A big fraction of the remained bacteria are phage-resistant mutants

(frequency of phage-resistant mutants 8.461024) but it has been shown that

virulent bacteria which become resistant to phage infection are less fit or lose their

pathogenic properties [45, 46, 47]. This occurs mainly because the cell surface

components, such as LPS and proteins, that act as receptors for phage adsorption

also can act as virulence factors. If similar situations occur in vivo, it is worth

mentioning that the bacterial population would assume a non-lethal state (non

virulent to fish larvae). Mutations in these receptors to develop resistance to the

phage would reduce pathogenicity [45, 46, 47, 48], and, in this case, bacteria

regrowth after phage therapy would have few or no consequences for fish larvae.

Further studies are needed to detect mutation in outer bacterial molecules of

resistant bacteria after phage therapy, as these can act as phage receptors and

possibly, at the same time, as virulence factors. Moreover, it was observed that
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during treatment the phage titer increased despite bacterial numbers have

remained constant or increased, thus suggesting that cell turnover of these

resistant bacteria is likely occurring to generate the phage. Future microscopic

studies should look at the bacterial cells to characterize their morphological

diversity, in order to understand what is occurring during phage therapy.

Levin and Bull [49] also proposed that phages decrease the bacterial level

enough to be eliminated by the fish immune system by acquired response, but this

is not the case in fish larvae because they are unable to develop specific acquired

immunity [12]. Further studies on this topic are needed.

Whether or not it is possible to supply phages to cultured fish by

intraperitoneal or intramuscular administration [9, 15, 16], research on bacter-

iophage treatment in aquaculture has mainly focused on oral administration

[5, 9, 15, 16, 17, 18]. Oral administration can affect the phage viability due to the

harsh conditions of the gastrointestinal tract [15, 16]. In fish larviculture, where

mass mortality is commonly associated with the actions of opportunistic bacteria,

phages cannot be supplied by oral administration and must be directly released

into the culture water. Consequently, phage survival in aquaculture water must be

high to reach the specific site of infection, the intestine. As the phage VP-2 is able

to survive long periods in marine aquaculture water (at least 5 months), the

release of the phage directly into the water allows the phage to control not only the

bacteria inside the larvae fish, but also avoid colonization on fish larvae skin. In

the case of infections by V. anguillarum, avoiding colonization on the fish skin can

play a key role in preventing disease development [50]. In addition, the survival of

VP-2 in aquaculture water allows for the use of phage therapy as a prophylactic

measure to prevent infections, as phages can inactivate pathogenic bacteria in the

water without affecting the beneficial bacterial community (e.g., probiotics). In

fact, in larval fish assays, the phage VP-2 controlled V. anguillarum growth but did

not affect other bacteria that grew during the experiment. After 24 h of treatment,

the concentration of V. anguillarum began to decrease, but at 48 and 72 h the

bacterial density increased. At 48 and 72 h, however, there was a shift in the major

bacterial type, with the new colony types not matching Vibrio colonies. Other

bacteria already present in the larvae may have grown in the saline embryo water

(SEW) and masked the decrease in the Vibrio concentration. Actually, the growth

of these bacteria was also observed in the control group with added phage but not

infected with bacteria and in the control with no bacteria or phage added. The

bacterial colonies that do not present the Vibrio type were, most likely,

Proteobacteria associated to the zebrafish gut, faeces and mucus (e.g. Aeromonas

sp. or Pseudomonas) [51, 52]. Although the presence of these contaminating

bacteria can mask the decrease in the Vibrio concentration, these contaminating

bacteria and other bacteria, will also be present in aquaculture water and in fish

when phage therapy is applied in the field.
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Conclusions

Overall, our findings suggest that phage therapy is a suitable alternative approach

against vibriosis in aquaculture, with phage administration directly to the culture

water as a promising method for treatment of fish larvae. Further studies need to

be performed in the field and in a real scale, at a semi-intensive fish farm, where

environmental conditions are known to vary considerably at different time scales,

to evaluate the potential of this approach under environmental/seasonal variation.

As MOI of 10 and even of 1 are enough to efficiently inactivate the pathogenic

bacteria, phage lysates with about 109 PFU mL-1 can be diluted 10 to 100 times.

In this way, small scale production (5 L) of phages is enough to produce sufficient

material for purification. The resulting suspensions can be scaled-up, using pilot

stirred bioreactors working with culture volumes of 10 to 300 L, to increase batch

size. As phage solutions at 107–108 PFU mL-1 are enough, with 5 L of stock

suspension 50–500 L of work suspension can be easily obtained. About 50 L of

phage solution at 107–108 PFU mL-1 are enough for a treatment at real scale. As

bacterial infection occurred at concentrations around 105 CFU mL21, phage

suspensions with 107–108 PFU mL21 allows the use of MOI of 100 which has

been shown efficient rates of fish pathogenic bacterial inactivation in previous

studies [37, 44]. This study provides the first evidence that phage therapy is a

feasible alternative approach against vibriosis during fish larvae production in

aquaculture systems.
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