938 research outputs found

    Analysis of Slewing and Attitude Determination Requirements for CTEx

    Get PDF
    This thesis examines the slewing and attitude determination requirements for the Chromotomographic Experiment (CTEX), a chromotomographic-based hyperspectral imager, to be mounted on-board the Japanese Experiment Module (JEM) External Facility (EF). The in-track slewing requirement is driven by the facts that CTEx has a very small field of view (FOV) and is required to collect 10 seconds of data for any given collection window. The need to slew in the cross-track direction is a product of the small FOV and target/calibration site access. CTEx incorporates a two-axis slow-steering dwell mirror with a range of ± 8 degrees and an accuracy of 10 arcseconds in each axis to slew the FOV. The inherent inaccuracy in the knowledge of the International Space Station\u27s (ISS) attitude (± 3 degrees) poses significant complications in accurately pointing CTEx even with more accurate (0.3 degrees) attitude information provided by the JEM. The desire is for CTEx to incorporate a star tracker with 1 arcsecond accuracy to determine attitude without reliance on outside sources

    Evaluation of Nematode Resistance in Lablab

    Get PDF
    Last updated: 6/12/200

    New Summer Forage Legumes for Texas

    Get PDF
    Last updated: 6/12/200

    Hydrodynamic and Aerodynamic Tests of Models of Flying-boat Hulls Designed Flow Aerodynamic Drag - NACA Models 74, 74-A, and 75

    Get PDF
    The present tests illustrate how the aerodynamic drag of a flying boat hull may be reduced by following closely the form of a low drag aerodynamic body and the manner in which the extent of the aerodynamic refinement is limited by poorer hydrodynamic performance. This limit is not sharply defined but is first evidenced by an abnormal flow of water over certain parts of the form accompanied by a sharp increase in resistance. In the case of models 74-A and 75, the resistance (sticking) occurs only at certain combinations of speed, load, and trim and can be avoided by proper control of the trim at high water speeds. Model 75 has higher water resistance at very high speeds than does model 74-A. With constant speed propellers and high takeoff speeds, it appears that the form of model 75 would give slightly better takeoff performance. Model 74-A, however, has lower aerodynamic drag than does model 75 for the same volume of hull

    Estimated pre-morbid IQ effects on cognitive and functional outcomes in Alzheimer disease: a longitudinal study in a treated cohort

    Get PDF
    Abstract Background Cognitive reserve is thought to influence the degree of neuropathology needed for diagnosis of Alzheimer disease (AD). Cognitive reserve can be operationally defined as the hypothesized capacity of the mature adult brain to sustain the effects of disease or injury without manifesting clinical symptoms of AD, but sufficient to cause clinical dementia in an individual possessing less cognitive reserve. Its effect on the subsequent course of AD is less clear. Pre-morbid IQ is a useful measure of cognitive reserve. Methods We studied 659 consecutive patients with AD at a tertiary referral memory clinic. Patients were assessed on six cognitive tests at baseline. Activities of Daily Living (ADL) were measured on the Instrumental Activities of Daily Living (IADL) scale and Physical Self-Maintenance Scale (PSMS). The National Adult Reading Test (NART) was used to estimate pre-morbid IQ. Patients were followed up after starting a cholinesterase inhibitor over 78 weeks. Mixed general linear models estimated the effects of NART on cognition and ADL. Results Three hundred and fifty-five patients had NART scored with a mean estimated pre-morbid IQ of 104.7 (standard deviation 18.5). NART increased overall cognitive ability by 2.7% for every 10 IQ points (p Conclusion Our data support the hypothesis that cognitive reserve continues to have a limited influence on cognition after AD has been diagnosed and thus, indirectly, has an impact on ADL.</p

    Plasma Electronics

    Get PDF
    Contains research objectives and reports on twelve research projects.National Science Foundation under Grant G-9330U. S. Navy (Office of Naval Research) under Contract Nonr-1841(78)U. S. NavyLincoln Laboratory, Purchase Order DDL B-00306U. S. ArmyU. S. Air Force under Air Force Contract AF19(604)-740

    MI-GWAS: a SAS platform for the analysis of inherited and maternal genetic effects in genome-wide association studies using log-linear models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several platforms for the analysis of genome-wide association data are available. However, these platforms focus on the evaluation of the genotype inherited by affected (i.e. case) individuals, whereas for some conditions (e.g. birth defects) the genotype of the mothers of affected individuals may also contribute to risk. For such conditions, it is critical to evaluate associations with both the maternal and the inherited (i.e. case) genotype. When genotype data are available for case-parent triads, a likelihood-based approach using log-linear modeling can be used to assess both the maternal and inherited genotypes. However, available software packages for log-linear analyses are not well suited to the analysis of typical genome-wide association data (e.g. including missing data).</p> <p>Results</p> <p>An integrated platform, Maternal and Inherited Analyses for Genome-wide Association Studies <b>(</b>MI-GWAS) for log-linear analyses of maternal and inherited genetic effects in large, genome-wide datasets, is described. MI-GWAS uses SAS and LEM software in combination to appropriately format data, perform the log-linear analyses and summarize the results. This platform was evaluated using existing genome-wide data and was shown to perform accurately and relatively efficiently.</p> <p>Conclusions</p> <p>The MI-GWAS platform provides a valuable tool for the analysis of association of a phenotype or condition with maternal and inherited genotypes using genome-wide data from case-parent triads. The source code for this platform is freely available at <url>http://www.sph.uth.tmc.edu/sbrr/mi-gwas.htm</url>.</p

    Comprehensive survey of energetic electron events in Mercury\u27s magnetosphere with data from the MESSENGER Gamma-Ray and Neutron Spectrometer

    Get PDF
    Data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) Gamma-Ray and Neutron Spectrometer have been used to detect and characterize energetic electron (EE) events in Mercury\u27s magnetosphere. This instrument detects EE events indirectly via bremsstrahlung photons that are emitted when instrument and spacecraft materials stop electrons having energies of tens to hundreds of keV. From Neutron Spectrometer data taken between 18 March 2011 and 31 December 2013 we have identified 2711 EE events. EE event amplitudes versus energy are distributed as a power law and have a dynamic range of a factor of 400. The duration of the EE events ranges from tens of seconds to nearly 20 min. EE events may be classified as bursty (large variation with time over an event) or smooth (small variation). Almost all EE events are detected inside Mercury\u27s magnetosphere on closed field lines. The precise occurrence times of EE events are stochastic, but the events are located in well-defined regions with clear boundaries that persist in time and form what we call “quasi-permanent structures.” Bursty events occur closer to dawn and at higher latitudes than smooth events, which are seen near noon-to-dusk local times at lower latitudes. A subset of EE events shows strong periodicities that range from hundreds of seconds to tens of milliseconds. The few-minute periodicities are consistent with the Dungey cycle timescale for the magnetosphere and the occurrence of substorm events in Mercury\u27s magnetotail region. Shorter periods may be related to phenomena such as north-south bounce processes for the energetic electrons

    Systems Analysis for a Venus Aerocapture Mission

    Get PDF
    Previous high level analysis has indicated that significant mass savings may be possible for planetary science missions if aerocapture is employed to place a spacecraft in orbit. In 2001 the In-Space Propulsion program identified aerocapture as one of the top three propulsion technologies for planetary exploration but that higher fidelity analysis was required to verify the favorable results and to determine if any supporting technology gaps exist that would enable or enhance aerocapture missions. A series of three studies has been conducted to assess, from an overall system point of view, the merit of using aerocapture at Titan, Neptune and Venus. These were chosen as representative of a moon with an atmosphere, an outer giant gas planet and an inner planet. The Venus mission, based on desirable science from plans for Solar System Exploration and Principal Investigator proposals, to place a spacecraft in a 300km polar orbit was examined and the details of the study are presented in this paper

    2D-fluoroscopic navigated percutaneous screw fixation of pelvic ring injuries - a case series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Screw fixation of pelvic ring fractures is a common, but demanding procedure and navigation techniques were introduced to increase the precision of screw placement. The purpose of this case series was the evaluation of screw misplacement rate and functional outcome of percutaneous screw fixation of pelvic ring disruptions using a 2D navigation system.</p> <p>Methods</p> <p>Between August 2004 and December 2007, 44 of 442 patients with pelvic injuries were included for closed reduction and percutaneous screw fixation of disrupted pelvic ring lesions using an optoelectronic 2D-fluoroscopic based navigation system. Operating and fluoroscopy time were measured, as well as peri- and postoperative complications documented. Screw position was assessed by postoperative CT scans. Quality of live was evaluated by SF 36-questionnaire in 40 of 44 patients at mean follow up 15.5 ± 1.2 month.</p> <p>Results</p> <p>56 iliosacral- and 29 ramus pubic-screws were inserted (mean operation time per screw 62 ± 4 minutes, mean fluoroscopy time per screw 123 ± 12 seconds). In post-operative CT-scans the screw position was assessed and graded as follows: I. secure positioning, completely in the cancellous bone (80%); II. secure positioning, but contacting cortical bone structures (14%); III. malplaced positioning, penetrating the cortical bone (6%). The malplacements predominantly occurred in bilateral overlapping screw fixation. No wound infection or iatrogenic neurovascular damage were observed. Four re-operations were performed, two of them due to implant-misplacement and two of them due to implant-failure.</p> <p>Conclusion</p> <p>2D-fluoroscopic navigation is a safe tool providing high accuracy of percutaneous screw placement for pelvic ring fractures, but in cases of a bilateral iliosacral screw fixation an increased risk for screw misplacement was observed. If additional ramus pubic screw fixations are performed, the retrograde inserted screws have to pass the iliopubic eminence to prevent an axial screw loosening.</p
    corecore