2,456 research outputs found
Good Faith Obligation in the Unifrom Commercial Code: Problems in Determining Its Meaning and Evaluating Its Effect
Analytical prediction with multidimensional computer programs and experimental verification of the performance, at a variety of operating conditions, of two traveling wave tubes with depressed collectors
Experimental and analytical results are compared for two high performance, octave bandwidth TWT's that use depressed collectors (MDC's) to improve the efficiency. The computations were carried out with advanced, multidimensional computer programs that are described here in detail. These programs model the electron beam as a series of either disks or rings of charge and follow their multidimensional trajectories from the RF input of the ideal TWT, through the slow wave structure, through the magnetic refocusing system, to their points of impact in the depressed collector. Traveling wave tube performance, collector efficiency, and collector current distribution were computed and the results compared with measurements for a number of TWT-MDC systems. Power conservation and correct accounting of TWT and collector losses were observed. For the TWT's operating at saturation, very good agreement was obtained between the computed and measured collector efficiencies. For a TWT operating 3 and 6 dB below saturation, excellent agreement between computed and measured collector efficiencies was obtained in some cases but only fair agreement in others. However, deviations can largely be explained by small differences in the computed and actual spent beam energy distributions. The analytical tools used here appear to be sufficiently refined to design efficient collectors for this class of TWT. However, for maximum efficiency, some experimental optimization (e.g., collector voltages and aperture sizes) will most likely be required
Pressure effects on charge, spin, and metal-insulator transitions in narrow bandwidth manganite PrCaMnO
Pressure effects on the charge and spin states and the relation between the
ferromagnetic and metallic states were explored on the small bandwidth
manganite PrCaMnO (x = 0.25, 0.3, 0.35). Under pressure,
the charge ordering state is suppressed and a ferromagnetic metallic state is
induced in all three samples. The metal-insulator transition temperature
(T) increases with pressure below a critical point P*, above which
T decreases and the material becomes insulating as at the ambient
pressure. The e electron bandwidth and/or band-filling mediate the
pressure effects on the metal-insulator transition and the magnetic transition.
In the small bandwidth and low doping concentration compound (x = 0.25), the
T and Curie temperature (T) change with pressure in a reverse way
and do not couple under pressure. In the x = 0.3 compound, the relation of
T and T shows a critical behavior: They are coupled in the range
of 0.8-5 GPa and decoupled outside of this range. In the x = 0.35
compound, T and T are coupled in the measured pressure range where
a ferromagnetic state is present
Invasive Obstetric Procedures and Cesarean Sections in Women With Known Herpes Simplex Virus Status During Pregnancy.
BackgroundNeonatal herpes is a potentially devastating infection that results from acquisition of herpes simplex virus (HSV) type 1 or 2 from the maternal genital tract at the time of vaginal delivery. Current guidelines recommend (1) cesarean delivery if maternal genital HSV lesions are present at the time of labor and (2) antiviral suppressive therapy for women with known genital herpes to decrease HSV shedding from the genital tract at the time of vaginal delivery. However, most neonatal infections occur in infants born to women without a history of genital HSV, making current prevention efforts ineffective for this group. Although routine serologic HSV testing of women during pregnancy could identify women at higher risk of intrapartum viral shedding, it is uncertain how this knowledge might impact intrapartum management, and a potential concern is a higher rate of cesarean sections among women known to be HSV-2 seropositive.MethodsTo assess the effects of prenatal HSV-2 antibody testing, history of genital herpes, and use of suppressive antiviral medication on the intrapartum management of women, we investigated the frequency of invasive obstetric procedures and cesarean deliveries. We conducted a retrospective cohort study of pregnant women delivering at the University of Washington Medical center in Seattle, Washington. We defined the exposure of interest as HSV-2 antibody positivity or known history of genital herpes noted in prenatal records. The primary outcome was intrapartum procedures including fetal scalp electrode, artificial rupture of membranes, intrauterine pressure catheter, or operative vaginal delivery (vacuum or forceps). The secondary outcome was incidence of cesarean birth. Univariate and multivariable logistic regressions were performed.ResultsFrom a total of 449 women included in the analysis, 97 (21.6%) were HSV-2 seropositive or had a history of genital herpes (HSV-2/GH). Herpes simplex virus-2/GH women not using suppressive antiviral therapy were less likely to undergo intrapartum procedures than women without HSV-2/GH (odds ratio [OR], 0.49; 95% confidence interval [CI], 0.25-0.95; P = .036), but this relationship was attenuated after adjustment for potential confounders (adjusted OR, 0.69; 95% CI, 0.34-1.41; P = .31). There was no difference in intrapartum procedures for women on suppressive therapy versus women without HSV-2/GH (OR, 1.17; 95% CI, 0.66-2.07; P = .60). Similar proportions of cesarean sections were performed within each group of women: 25% without history of HSV-2/GH, 30% on suppressive treatment, and 28.1% without suppressive treatment (global, P = .73).ConclusionsIn this single-site study, provider awareness of genital herpes infection either by HSV serotesting or history was associated with fewer invasive obstetric procedures shown to be associated with neonatal herpes, but it was not associated with an increased rate of cesarean birth
Electronic structure of the (111) and (-1-1-1) surfaces of cubic BN: A local-density-functional ab initio study
We present ab initio local-density-functional electronic structure
calculations for the (111) and (-1-1-1) surfaces of cubic BN. The energetically
stable reconstructions, namely the N adatom, N3 triangle models on the (111),
the (2x1), boron and nitrogen triangle patterns on the (-1-1-1) surface are
investigated. Band structure and properties of the surface states are discussed
in detail.Comment: 8 pages, 12 figure
On-site early-warning system for bishkek (Kyrgyzstan)
<p>In this work, the development of an on-site early warning system for Bishkek (Kyrgyzstan) is outlined. Several low cost sensors equipped with MEMS accelerometers are installed in eight buildings distributed within the urban area. The different sensing units communicate each other via wireless links and the seismic data are streamed in real-time to the data center using internet. Since each single sensing unit has computing capabilities, software for data processing can be installed to perform decentralized actions. In particular, each sensing unit can perform event detection task and run software for on-site early warning. If a description for the vulnerability of the building is uploaded in the sensing unit, this piece of information can be exploited to introduce the expected probability of damage in the early-warning protocol customized for a specific structure.</p
Magnetoelectric and structural properties of Y2CoMnO6: The role of antisite defects
We have carried out an investigation on the magnetoelectric properties of the presumed multiferroic Y2CoMnO6 with different degrees of Co/Mn atomic ordering. The magnetic ground state was studied by neutron diffraction, showing a collinear ferromagnetic (FM) ordering of Co and Mn moments with a small antiferromagnetic canting. No superstructure peaks from an E-type magnetic structure were detected in our measurements. Magnetic measurements reveal FM transitions with pinned magnetic domains. The degree of Co/Mn ordering affects the Curie temperature only a little, but has strong effects on the magnetic hysteresis loops, and the FM moment signal at high field increases with increasing such order. The loops display steps at critical fields whose number and extent depends on each specimen. The most ordered sample exhibits the greatest steps ascribed to the alignment of magnetic domains separated by antiphase boundaries. All samples are insulators exhibiting low dielectric loss and dielectric constants at low temperature. On warming, they show a step increase in the real dielectric permittivity accompanied by peaks in the dielectric loss typical of thermally activated hopping processes. At room temperature, the huge values of the dielectric constant reveal the presence of Maxwell-Wagner depletion layers. Pyroelectric measurements reveal a high polarization at low temperature for these compounds that increases with increasing the Co/Mn ordering. There is no correlation between the magnetic transition and the onset of pyroelectric current. No significant changes are observed in the pyroelectric effect measured under an external magnetic field, so magnetoelectric coupling is negligible. This paper identifies the pyroelectric current as thermally stimulated depolarization current ascribed to the reorientation of defect dipoles with activation energy of about 0.05 eV. Therefore, no ferroelectric transition occurs in these compounds, discarding the existence of intrinsic magnetoelectric multiferroicity.For financial support we thank the Spanish Ministerio de Economía y Competitividad (MINECO) (Projects No. MAT2012-38213-C02-01 and -02 and No. MAT2015-68760-C1-1 and -2-P, cofunded by the European Regional Development Fund [ERDF] from the European Union) and Diputación General de Aragón (DGA, project E-69). J.A. Rodríguez-Velamazan acknowledges CSIC for the JAEdoc contract.Peer Reviewe
- …
