516 research outputs found
Drag-free estimation feasibility study
A drag compensation system for solar probes and other spacecraft that require a drag-free capability is presented. Estimation techniques, derived from modern control theory, are proposed
Cross-section measurement of the Ba 130 (p,γ) La 131 reaction for γ -process nucleosynthesis
Background: Deviations between experimental data of charged-particle-induced reactions and calculations within the statistical model are frequently found. An extended data base is needed to address the uncertainties regarding the nuclear-physics input parameters in order to understand the nucleosynthesis of the neutron-deficient p nuclei. Purpose: A measurement of total cross-section values of the Ba130(p,γ)La131 reaction at low proton energies allows a stringent test of statistical model predictions with different proton+nucleus optical model potentials. Since no experimental data are available for proton-capture reactions in this mass region around A ≈130, this measurement can be an important input to test the global applicability of proton+nucleus optical model potentials. Method: The total reaction cross-section values were measured by means of the activation method. After the irradiation with protons, the reaction yield was determined by use of γ-ray spectroscopy using two clover-type high-purity germanium detectors. In total, cross-section values for eight different proton energies could be determined in the energy range between 3.6 MeV ≤Ep≤ 5.0 MeV, thus, inside the astrophysically relevant energy region. Results: The measured cross-section values were compared to Hauser-Feshbach calculations using the statistical model codes TALYS and SMARAGD with different proton+nucleus optical model potentials. With the semimicroscopic JLM proton+nucleus optical model potential used in the SMARAGD code, the absolute cross-section values are reproduced well, but the energy dependence is too steep at the lowest energies. The best description is given by a TALYS calculation using the semimicroscopic Bauge proton+nucleus optical model potential using a constant renormalization factor. Conclusions: The statistical model calculation using the Bauge semimicroscopic proton+nucleus optical model potential deviates by a constant factor of 2.1 from the experimental data. Using this model, an experimentally supported stellar reaction rate for proton capture on the p nucleus Ba130 was calculated. At astrophysical temperatures, an increase in the stellar reaction rate of 68% compared to rates obtained from the widely used NON-SMOKER code is found. This measurement extends the scarce experimental data base for charged-particle-induced reactions, which can be helpful to derive a more globally applicable proton+nucleus optical model potential.Peer reviewedFinal Accepted Versio
Experimental cross sections of Ho 165 (α,n) Tm 168 and Er 166 (α,n) Yb 169 for optical potential studies relevant for the astrophysical γ process
Background: Optical potentials are crucial ingredients for the prediction of nuclear reaction rates needed in simulations of the astrophysical γ process. Associated uncertainties are particularly large for reactions involving α particles. This includes (γ,α) reactions which are of special importance in the γ process. Purpose: The measurement of (α,n) reactions allows for an optimization of currently used α-nucleus potentials. The reactions Ho165(α,n) and Er166(α,n) probe the optical model in a mass region where γ process calculations exhibit an underproduction of p nuclei which is not yet understood. Method: To investigate the energy-dependent cross sections of the reactions Ho165(α,n) and Er166(α,n) close to the reaction threshold, self-supporting metallic foils were irradiated with α particles using the FN tandem Van de Graaff accelerator at the University of Notre Dame. The induced activity was determined afterwards by monitoring the specific β-decay channels. Results: Hauser-Feshbach predictions with a widely used global α potential describe the data well at energies where the cross sections are almost exclusively sensitive to the α widths. Increasing discrepancies appear towards the reaction threshold at lower energy. Conclusions: The tested global α potential is suitable at energies above 14 MeV, while a modification seems necessary close to the reaction threshold. Since the γ and neutron widths show non-negligible impact on the predictions, complementary data are required to judge whether or not the discrepancies found can be solely assigned to the α width. © 2014 American Physical Society.Peer reviewedFinal Accepted Versio
Fragmentation and systematics of the Pygmy Dipole Resonance in the stable N=82 isotones
The low-lying electric dipole (E1) strength in the semi-magic nucleus 136Xe
has been measured which finalizes the systematic survey to investigate the
so-called pygmy dipole resonance (PDR) in all stable even N=82 isotones with
the method of nuclear resonance fluorescence using real photons in the entrance
channel. In all cases, a fragmented resonance-like structure of E1 strength is
observed in the energy region 5 MeV to 8 MeV. An analysis of the fragmentation
of the strength reveals that the degree of fragmentation decreases towards the
proton-deficient isotones while the total integrated strength increases
indicating a dependence of the total strength on the neutron-to-proton ratio.
The experimental results are compared to microscopic calculations within the
quasi-particle phonon model (QPM). The calculation includes complex
configurations of up to three phonons and is able to reproduce also the
fragmentation of the E1 strength which allows to draw conclusions on the
damping of the PDR. Calculations and experimental data are in good agreement in
the degree of fragmentation and also in the integrated strength if the
sensitivity limit of the experiments is taken into account
Investigation of alpha-nuclear potential families from elastic scattering experiments
In this work we present the continuation of the reported analysis [1] of the experimentally measured angular distributions of the reaction Cd-106(alpha, alpha)Cd-106 at several different energies around the Coulomb barrier. The difficulties that arise in the study of Cd-106-alpha-nuclear potential and the so called Family Problem are addressed
Isospin Character of the Pygmy Dipole Resonance in 124Sn
The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn
with the (a,a'g) coincidence method at E=136 MeV. The comparison with results
of photon-scattering experiments reveals a splitting into two components with
different structure: one group of states which is excited in (a,a'g) as well as
in (g,g') reactions and a group of states at higher energies which is only
excited in (g,g') reactions. Calculations with the self-consistent relativistic
quasiparticle time-blocking approximation and the quasiparticle phonon model
are in qualitative agreement with the experimental results and predict a
low-lying isoscalar component dominated by neutron-skin oscillations and a
higher-lying more isovector component on the tail of the giant dipole
resonance
Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy
Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum
The electric dipole response of Se above 4 MeV
The dipole response of Se in the energy range 4 to 9 MeV has been
analyzed using a polarized photon scattering
technique, performed at the High Intensity -Ray Source facility, to
complement previous work performed using unpolarized photons. The results of
this work offer both an enhanced sensitivity scan of the dipole response and an
unambiguous determination of the parities of the observed J=1 states. The
dipole response is found to be dominated by excitations, and can
reasonably be attributed to a pygmy dipole resonance. Evidence is presented to
suggest that a significant amount of directly unobserved excitation strength is
present in the region, due to unobserved branching transitions in the decays of
resonantly excited states. The dipole response of the region is underestimated
when considering only ground state decay branches. We investigate the electric
dipole response theoretically, performing calculations in a 3D cartesian-basis
time-dependent Skyrme-Hartree-Fock framework.Comment: 20 pages, 18 figures, to be submitted to PR
- …