342 research outputs found
Detailed design of a quiet high flow fan
A single stage fan was designed to demonstrate the noise abatement properties of near-sonic inlet flow and long-chord stator vanes for the reduction of both upstream and downstream propagated fan source noise. It is designed to produce a pressure ratio of 1.653:1 with an adiabatic efficiency of 83.9%. The fan has a 508 mm inlet diameter with a hub/tip ratio of 0.426 and a design tip speed of 533.4 m/sec. The design inlet specific flow rate is 219.71 kg/sec sq m and there are 10 tandem stator vanes with a combined aspect ratio of 0.54
An Investigation of Bilateral Symmetry During Manual Wheelchair Propulsion
Studies of manual wheelchair propulsion often assume bilateral symmetry to simplify data collection, processing and analysis. However, the validity of this assumption is unclear. Most investigations of wheelchair propulsion symmetry have been limited by a relatively small sample size and a focus on a single propulsion condition (e.g., level propulsion at self-selected speed). The purpose of this study was to evaluate bilateral symmetry during manual wheelchair propulsion in a large group of subjects across different propulsion conditions. Three-dimensional kinematics and handrim kinetics along with spatiotemporal variables were collected and processed from 80 subjects with paraplegia while propelling their wheelchairs on a stationary ergometer during three different conditions: level propulsion at their self-selected speed (free), level propulsion at their fastest comfortable speed (fast), and propulsion on an 8% grade at their level, self-selected speed (graded). All kinematic variables had significant side-to-side differences, primarily in the graded condition. Push angle was the only spatiotemporal variable with a significant side-to-side difference, and only during the graded condition. No kinetic variables had significant side-to-side differences. The magnitudes of the kinematic differences were low, with only one difference exceeding five degrees. With differences of such small magnitude, the bilateral symmetry assumption appears to be reasonable during manual wheelchair propulsion in subjects without significant upper-extremity pain or impairment. However, larger asymmetries may exist in individuals with secondary injuries and pain in their upper extremity and different etiologies of their neurological impairment
Test Results on the Silicon Pixel Detector for the TTF-FEL Beam Trajectory Monitor
Test measurements on the silicon pixel detector for the beam trajectory
monitor at the free electron laser of the TESLA test facility are presented. To
determine the electronic noise of detector and read-out and to calibrate the
signal amplitude of different pixels the 6 keV photons of the manganese K line
are used. Two different methods determine the spatial accuracy of the detector:
In one setup a laser beam is focused to a straight line and moved across the
pixel structure. In the other the detector is scanned using a low-intensity
electron beam of an electron microscope. Both methods show that the symmetry
axis of the detector defines a straight line within 0.4 microns. The
sensitivity of the detector to low energy X-rays is measured using a vacuum
ultraviolet beam at the synchrotron light source HASYLAB. Additionally, the
electron microscope is used to study the radiation hardness of the detector.Comment: 14 pages (Latex), 13 figures (Postscript), submitted to Nuclear
Instruments and Methods
Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope
Arch filament systems occur in active sunspot groups, where a fibril
structure connects areas of opposite magnetic polarity, in contrast to active
region filaments that follow the polarity inversion line. We used the GREGOR
Infrared Spectrograph (GRIS) to obtain the full Stokes vector in the spectral
lines Si I 1082.7 nm, He I 1083.0 nm, and Ca I 1083.9 nm. We focus on the
near-infrared calcium line to investigate the photospheric magnetic field and
velocities, and use the line core intensities and velocities of the helium line
to study the chromospheric plasma. The individual fibrils of the arch filament
system connect the sunspot with patches of magnetic polarity opposite to that
of the spot. These patches do not necessarily coincide with pores, where the
magnetic field is strongest. Instead, areas are preferred not far from the
polarity inversion line. These areas exhibit photospheric downflows of moderate
velocity, but significantly higher downflows of up to 30 km/s in the
chromospheric helium line. Our findings can be explained with new emerging flux
where the matter flows downward along the fieldlines of rising flux tubes, in
agreement with earlier results.Comment: Proceedings 12th Potsdam Thinkshop to appear in Astronomische
Nachrichte
Magnetic fields of opposite polarity in sunspot penumbrae
Context. A significant part of the penumbral magnetic field returns below the
surface in the very deep photosphere. For lines in the visible, a large portion
of this return field can only be detected indirectly by studying its imprints
on strongly asymmetric and three-lobed Stokes V profiles. Infrared lines probe
a narrow layer in the very deep photosphere, providing the possibility of
directly measuring the orientation of magnetic fields close to the solar
surface.
Aims. We study the topology of the penumbral magnetic field in the lower
photosphere, focusing on regions where it returns below the surface.
Methods. We analyzed 71 spectropolarimetric datasets from Hinode and from the
GREGOR infrared spectrograph. We inferred the quality and polarimetric accuracy
of the infrared data after applying several reduction steps. Techniques of
spectral inversion and forward synthesis were used to test the detection
algorithm. We compared the morphology and the fractional penumbral area covered
by reversed-polarity and three-lobed Stokes V profiles for sunspots at disk
center. We determined the amount of reversed-polarity and three-lobed Stokes V
profiles in visible and infrared data of sunspots at various heliocentric
angles. From the results, we computed center-to-limb variation curves, which
were interpreted in the context of existing penumbral models.
Results. Observations in visible and near-infrared spectral lines yield a
significant difference in the penumbral area covered by magnetic fields of
opposite polarity. In the infrared, the number of reversed-polarity Stokes V
profiles is smaller by a factor of two than in the visible. For three-lobed
Stokes V profiles the numbers differ by up to an order of magnitude.Comment: 11 pages 10 figures plus appendix (2 pages 3 figures). Accepted as
part of the A&A special issue on the GREGOR solar telescop
A dynamical model for the penumbral fine structure and the Evershed effect in sunspots
Relying on the assumption that the interchange convection of magnetic flux
tubes is the physical cause for the existence of sunspot penumbrae, we propose
a model in which the dynamical evolution of a thin magnetic flux tube
reproduces the Evershed effect and the penumbral fine structure such as bright
and dark filaments and penumbral grains.
According to our model, penumbral grains are the manifestation of the
footpoints of magnetic flux tubes, along which hot subphotospheric plasma flows
upwards with a few km/s. Above the photosphere the hot plasma inside the tube
is cooled by radiative losses as it flows horizontally outwards. As long as the
flowing plasma is hotter than the surroundings, it constitutes a bright radial
filament. The flow confined to a thin elevated channel reaches the temperature
equilibrium with the surrounding atmosphere and becomes optically thin near the
outer edge of the penumbra.
Here, the tube has a height of approximately 100 km above the continuum and
the flow velocity reaches up to 14 km/s. Such a flow channel can reproduce the
observed signatures of the Evershed effect.Comment: 5 pages, 2 figures, accepted for publication in ApJ letter
Photospheric Magnetic Fields of the Trailing Sunspots in Active Region NOAA 12396
The solar magnetic field is responsible for all aspects of solar activity.
Sunspots are the main manifestation of the ensuing solar activity. Combining
high-resolution and synoptic observations has the ambition to provide a
comprehensive description of the sunspot growth and decay processes. Active
region NOAA 12396 emerged on 2015 August 3 and was observed three days later
with the 1.5-meter GREGOR solar telescope on 2015 August 6. High-resolution
spectropolarimetric data from the GREGOR Infrared Spectrograph (GRIS) are
obtained in the photospheric Si I 1082.7 nm and Ca I 1083.9
nm lines, together with the chromospheric He I 1083.0 nm triplet.
These near-infrared spectropolarimetric observations were complemented by
synoptic line-of-sight magnetograms and continuum images of the Helioseismic
and Magnetic Imager (HMI) and EUV images of the Atmospheric Imaging Assembly
(AIA) on board the Solar Dynamics Observatory (SDO).Comment: 4 pages, 2 figures, to be published in "Solar Polarization Workshop
8", ASP Proceedings, Luca Belluzzi (eds.
A retrospective of the GREGOR solar telescope in scientific literature
In this review, we look back upon the literature, which had the GREGOR solar
telescope project as its subject including science cases, telescope subsystems,
and post-focus instruments. The articles date back to the year 2000, when the
initial concepts for a new solar telescope on Tenerife were first presented at
scientific meetings. This comprehensive bibliography contains literature until
the year 2012, i.e., the final stages of commissioning and science
verification. Taking stock of the various publications in peer-reviewed
journals and conference proceedings also provides the "historical" context for
the reference articles in this special issue of Astronomische
Nachrichten/Astronomical Notes.Comment: 6 pages, 2 color figures, this is the pre-peer reviewed version of
Denker et al. 2012, Astron. Nachr. 333, 81
- …