487 research outputs found

    Asymmetric dark matter with a possible Bose-Einstein condensate

    Full text link
    We investigate the properties of a Bose gas with a conserved charge as a dark matter candidate, taking into account the restrictions imposed by relic abundance, direct and indirect detection limits, big-bang nucleosynthesis and large scale structure formation constraints. We consider both the WIMP-like scenario of dark matter masses ≳ \gtrsim 1 GeV, and the small mass scenario, with masses ≲10−11 \lesssim 10^{-11} eV. We determine that a Bose-Einstein condensate will be present at sufficiently early times, but only for the small-mass scenario it will remain at the present epoch

    DETERMINATION OF THE INOCULATION FREQUENCY, TIMING OF INOCULATION AND DOSE OF A BACTERIAL RUMINAL INOCULANT FOR ACIDOSIS PREVENTION IN FEEDLOT CATTLE

    Get PDF
    We are evaluating the efficacy of a ruminal bacterial inoculant (Megasphaera elsdenii 407 A) for prevention of acute acidosis in grain-fed cattle. As a part of this process, we examined the effects of inoculation frequency, timing of inoculation and dose of 407 A for prevention of acute acidosis in ruminally fistulated cattle. Three levels of frequency, two levels of timing and three doses were considered, however, a complete 3x2x3 factorial study was not run because of resource constraints. The study was conducted in two separate trials. The first was designed as a 3x2 factorial experiment with inoculation frequency and timing of inoculation while holding dose constant. The second trial was designed as a 2x3 factorial experiment involving inoculation frequency and 407 A dose while holding timing constant. Both of these trials were conducted as complete block designs with seven blocks, with repeated measurements of ruminal lactic acid made across the duration of the two trials. Changes in ruminal pH for acutely acidotic cattle (pH:≤;5.0) are known to be driven largely by changes in total ruminal lactic acid concentration and that is why this variable was selected for these trials. Area under the lactic acid curves was selected as a method of summarizing across the repeated measures. Response surface techniques were used to determine the optimal settings for the treatment factors examined. Alternative designs will be contrasted

    Electrically driven spin excitation in a ferroelectric magnet DyMnO_3

    Full text link
    Temperature (5--250 K) and magnetic field (0--70 kOe) variations of the low-energy (1--10 meV) electrodynamics of spin excitations have been investigated for a complete set of light-polarization configurations for a ferroelectric magnet DyMnO3_3 by using terahertz time-domain spectroscopy. We identify the pronounced absorption continuum (1--8 meV) with a peak feature around 2 meV, which is electric-dipole active only for the light EE-vector along the a-axis. This absorption band grows in intensity with lowering temperature from the spin-collinear paraelectric phase above the ferroelectric transition, but is independent of the orientation of spiral spin plane (bcbc or abab), as shown on the original PsP_{\rm s} (ferroelectric polarization) ∥c\parallel c phase as well as the magnetic field induced Ps∥aP_{\rm s}\parallel a phase. The possible origin of this electric-dipole active band is argued in terms of the large fluctuations of spins and spin-current.Comment: New version, 11 pages including colored 8 figure

    The cell cycle checkpoint system MAST(L)-ENSA/ARPP19-PP2A is targeted by cAMP/PKA and cGMP/PKG in anucleate human platelets

    Get PDF
    The cell cycle is controlled by microtubule-associated serine/threonine kinase-like (MASTL), which phosphorylates the cAMP-regulated phosphoproteins 19 (ARPP19) at S62 and 19e/α-endosulfine (ENSA) at S67and converts them into protein phosphatase 2A (PP2A) inhibitors. Based on initial proteomic data, we hypothesized that the MASTL-ENSA/ARPP19-PP2A pathway, unknown until now in platelets, is regulated and functional in these anucleate cells. We detected ENSA, ARPP19 and various PP2A subunits (including seven different PP2A B-subunits) in proteomic studies of human platelets. ENSA-S109/ARPP19–S104 were efficiently phosphorylated in platelets treated with cAMP- (iloprost) and cGMP-elevating (NO donors/riociguat) agents. ENSA-S67/ARPP19-S62 phosphorylations increased following PP2A inhibition by okadaic acid (OA) in intact and lysed platelets indicating the presence of MASTL or a related protein kinase in human platelets. These data were validated with recombinant ENSA/ARPP19 and phospho-mutants using recombinant MASTL, protein kinase A and G. Both ARPP19 phosphorylation sites S62/S104 were dephosphorylated by platelet PP2A, but only S62-phosphorylated ARPP19 acted as PP2A inhibitor. Low-dose OA treatment of platelets caused PP2A inhibition, diminished thrombin-stimulated platelet aggregation and increased phosphorylation of distinct sites of VASP, Akt, p38 and ERK1/2 MAP kinases. In summary, our data establish the entire MASTL(like)–ENSA/ARPP19–PP2A pathway in human platelets and important interactions with the PKA, MAPK and PI3K/Akt systems. Keywords: platelets; serine/threonine protein phosphatases; cyclic AMP; cyclic GMP; ENSA; ARPP19; MAP kinas

    Mechanism of Lattice-Distortion-Induced Electric-Polarization Flop in the Multiferroic Perovskite Manganites

    Full text link
    Magnetoelectric phase diagrams of the perovskite manganites, Eu1-xYxMnO3 and Gd1-xTbxMnO3, are theoretically studied. We first construct a microscopic model, and then analyze the model using the Monte-Carlo method. We reproduce the diagrams, which contain two different multiferroic states, i.e., the ab-plane spin cycloid with electric polarization P//a and the bc-plane spin cycloid with P//c. We reveal that their competition originates from a conflict between the single-ion anisotropy and the Dzyaloshinsky-Moriya interaction, which is controlled by the second-neighbor spin exchanges enhanced by the GdFeO3-type distortion. This leads to a P flop from a to c with increasing x in agreement with the experiments.Comment: 5 pages, 5 figures. Recalculated results after correcting errors in the assignment of DM vectors. The conclusion is not affecte

    Hypoxia induces a glycolytic complex in intestinal epithelial cells independent of HIF-1-driven glycolytic gene expression

    Get PDF
    The metabolic adaptation of eukaryotic cells to hypoxia involves increasing dependence upon glycolytic adenosine triphosphate (ATP) production, an event with consequences for cellular bioenergetics and cell fate. This response is regulated at the transcriptional level by the hypoxia-inducible factor-1(HIF-1)-dependent transcriptional upregulation of glycolytic enzymes (GEs) and glucose transporters. However, this transcriptional upregulation alone is unlikely to account fully for the levels of glycolytic ATP produced during hypoxia. Here, we investigated additional mechanisms regulating glycolysis in hypoxia. We observed that intestinal epithelial cells treated with inhibitors of transcription or translation and human platelets (which lack nuclei and the capacity for canonical transcriptional activity) maintained the capacity for hypoxia-induced glycolysis, a finding which suggests the involvement of a nontranscriptional component to the hypoxia-induced metabolic switch to a highly glycolytic phenotype. In our investigations into potential nontranscriptional mechanisms for glycolytic induction, we identified a hypoxia-sensitive formation of complexes comprising GEs and glucose transporters in intestinal epithelial cells. Surprisingly, the formation of such glycolytic complexes occurs independent of HIF-1-driven transcription. Finally, we provide evidence for the presence of HIF-1α in cytosolic fractions of hypoxic cells which physically interacts with the glucose transporter GLUT1 and the GEs in a hypoxia-sensitive manner. In conclusion, we provide insights into the nontranscriptional regulation of hypoxia-induced glycolysis in intestinal epithelial cells.</p

    The polarizability model for ferroelectricity in perovskite oxides

    Full text link
    This article reviews the polarizability model and its applications to ferroelectric perovskite oxides. The motivation for the introduction of the model is discussed and nonlinear oxygen ion polarizability effects and their lattice dynamical implementation outlined. While a large part of this work is dedicated to results obtained within the self-consistent-phonon approximation (SPA), also nonlinear solutions of the model are handled which are of interest to the physics of relaxor ferroelectrics, domain wall motions, incommensurate phase transitions. The main emphasis is to compare the results of the model with experimental data and to predict novel phenomena.Comment: 55 pages, 35 figure

    Adenine, guanine and pyridine nucleotides in blood during physical exercise and restitution in healthy subjects

    Get PDF
    Maximal physical exertion is accompanied by increased degradation of purine nucleotides in muscles with the products of purine catabolism accumulating in the plasma. Thanks to membrane transporters, these products remain in an equilibrium between the plasma and red blood cells where they may serve as substrates in salvage reactions, contributing to an increase in the concentrations of purine nucleotides. In this study, we measured the concentrations of adenine nucleotides (ATP, ADP, AMP), inosine nucleotides (IMP), guanine nucleotides (GTP, GDP, GMP), and also pyridine nucleotides (NAD, NADP) in red blood cells immediately after standardized physical effort with increasing intensity, and at the 30th min of rest. We also examined the effect of muscular exercise on adenylate (guanylate) energy charge—AEC (GEC), and on the concentration of nucleosides (guanosine, inosine, adenosine) and hypoxanthine. We have shown in this study that a standardized physical exercise with increasing intensity leads to an increase in IMP concentration in red blood cells immediately after the exercise, which with a significant increase in Hyp concentration in the blood suggests that Hyp was included in the IMP pool. Restitution is accompanied by an increase in the ATP/ADP and ADP/AMP ratios, which indicates an increase in the phosphorylation of AMP and ADP to ATP. Physical effort applied in this study did not lead to changes in the concentrations of guanine and pyridine nucleotides in red blood cells
    • …
    corecore