15 research outputs found
Dynamical Downscaling Projections of Late 21st Century U.S. Landfalling Hurricane Activity
U.S. landfalling tropical cyclone (TC) activity was projected for late 21st century conditions using a two-step dynamical downscaling framework. A regional atmospheric model, run for 27 seasons, generated tropical storm cases. Each storm case was re-simulated (up to 15 days) using the higher resolution GFDL hurricane model. Thirteen CMIP3 or CMIP5 modeled climate change projections were explored as scenarios. Robustness of projections was assessed using statistical significance tests and comparing the sign of changes derived from different models. The proportion of TCs (tropical storms and hurricanes) making U.S. landfall increases for the warming scenarios (by order 50% or more). For category 1-3 hurricane frequency, a robust decrease is projected (basin-wide), but robust changes are not projected for U.S. landfalling cases. A relatively robust increase in U.S. landfalling category 4-5 hurricane frequency is projected, averaging about +400% across the models; 10 of 13 models/ensembles project an increase (statistically significant in three individual models), while three models projected no change. The most robust projections overall for U.S. landfalling TC activity are for increased near-storm rainfall rates: these increases average +18% (all tropical storms and hurricanes), +26% (all hurricanes), and +37% (major hurricanes). Landfalling hurricane wind speed intensities show no robust signal, in contrast to a ~5% increase in basin-averaged TC intensity; basin-wide Power Dissipation Index (PDI) is projected to decrease, partly due to decreased duration. TC translation speed increases a few percent in most simulations. A caveat is the frameworkâs low correlation of modeled U.S. TC landfalls vs. observed interannual variations (1980-2016)
Simulation of the Recent Multidecadal Increase of Atlantic Hurricane Activity Using an 18-km-Grid Regional Model
In this study, a new modeling framework for simulating Atlantic hurricane activity is introduced. The model is an 18-km-grid nonhydrostatic regional model, run over observed specified SSTs and nudged toward observed time-varying large-scale atmospheric conditions (Atlantic domain wavenumbers 0-2) derived from the National Centers for Environmental Prediction (NCEP) reanalyses. Using this perfect large-scale model approach for 27 recent August-October seasons (1980-2006), it is found that the model successfully reproduces the observed multidecadal increase in numbers of Atlantic hurricanes and several other tropical cyclone (TC) indices over this period. The correlation of simulated versus observed hurricane activity by year varies from 0.87 for basin-wide hurricane counts to 0.41 for U.S. landfalling hurricanes. For tropical storm count, accumulated cyclone energy, and TC power dissipation indices the correlation is similar to 0.75, for major hurricanes the correlation is 0.69, and for U.S. landfalling tropical storms, the correlation is 0.57. The model occasionally simulates hurricanes intensities of up to category 4 (similar to 942 mb) in terms of central pressure, although the surface winds (\u3c 47 in s-1) do not exceed category-2 intensity. On interannual time scales, the model reproduces the observed ENSO-Atlantic hurricane covariation reasonably well. Some notable aspects of the highly contrasting 2005 and 2006 seasons are well reproduced, although the simulated activity during the 2006 core season was excessive. The authors conclude that the model appears to be a useful tool for exploring mechanisms of hurricane variability in the Atlantic (e.g., shear versus potential intensity contributions). The model may be capable of making useful simulations/projections of pre-1980 or twentieth-century Atlantic hurricane activity. However, the reliability of these projections will depend on obtaining reliable large-scale atmospheric and SST conditions from sources external to the model
Impact of Upper-Tropospheric Temperature Anomalies and Vertical Wind Shear on Tropical Cyclone Evolution Using an Idealized Version of the Operational GFDL Hurricane Model
The GFDL hurricane modeling system, initiated in the 1970s, has progressed from a research tool to an operational system over four decades. This system is still in use today in research and operations, and its evolution will be briefly described. This study used an idealized version of the 2014 GFDL model to test its sensitivity across a wide range of three environmental factors that are often identified as key factors in tropical cyclone (TC) evolution: SST, atmospheric stability (upper-air thermal anomalies), and vertical wind shear (westerly through easterly). A wide range of minimum central pressure intensities resulted (905â980 hPa). The results confirm that a scenario (e.g., global warming) in which the upper troposphere warms relative to the surface will have less TC intensification than one with a uniform warming with height. The TC rainfall is also investigated for the SSTâstability parameter space. Rainfall increases for combinations of SST increase and increasing stability similar to global warming scenarios, consistent with climate change TC downscaling studies with the GFDL model. The forecast systemâs sensitivity to vertical shear was also investigated. The idealized model simulations showed weak disturbances dissipating under strong easterly and westerly shear of 10 m sâ1. A small bias for greater intensity under easterly sheared versus westerly sheared environments was found at lower values of SST. The impact of vertical shear on intensity was different when a strong vortex was used in the simulations. In this case, none of the initial disturbances weakened, and most intensified to some extent
Recommended from our members
Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios
Global projections of intense tropical cyclone activity are derived from the Geophysical Fluid Dynamics Laboratory (GFDL) High Resolution Atmospheric Model (HiRAM; 50-km grid) and the GFDL hurricane model using a two-stage downscaling procedure. First, tropical cyclone genesis is simulated globally using HiRAM. Each storm is then downscaled into the GFDL hurricane model, with horizontal grid spacing near the storm of 6 km, including ocean coupling (e.g., cold wake generation). Simulations are performed using observed sea surface temperatures (SSTs) (1980-2008) for a control run with 20 repeating seasonal cycles and for a late-twenty-first-century projection using an altered SST seasonal cycle obtained from a phase 5 of CMIP (CMIP5)/representative concentration pathway 4.5 (RCP4.5) multimodel ensemble. In general agreement with most previous studies, projections with this framework indicate fewer tropical cyclones globally in a warmer late-twenty-first-century climate, but also an increase in average cyclone intensity, precipitation rates, and the number and occurrence days of very intense category 4 and 5 storms. While these changes are apparent in the globally averaged tropical cyclone statistics, they are not necessarily present in each individual basin. The interbasin variation of changes in most of the tropical cyclone metrics examined is directly correlated to the variation in magnitude of SST increases between the basins. Finally, the framework is shown to be capable of reproducing both the observed global distribution of outer storm size-albeit with a slight high bias-and its interbasin variability. Projected median size is found to remain nearly constant globally, with increases in most basins offset by decreases in the northwest Pacific
Recommended from our members
Dynamical Downscaling Projections of Twenty-First-Century Atlantic Hurricane Activity: CMIP3 and CMIP5 Model-Based Scenarios
Twenty-first-century projections of Atlantic climate change are downscaled to explore the robustness of potential changes in hurricane activity. Multimodel ensembles using the phase 3 of the Coupled Model Intercomparison Project (CMIP3)/Special Report on Emissions Scenarios A1B (SRES A1B; late-twenty-first century) and phase 5 of the Coupled Model Intercomparison Project (CMIP5)/representative concentration pathway 4.5 (RCP4.5; early- and late-twenty-first century) scenarios are examined. Ten individual CMIP3 models are downscaled to assess the spread of results among the CMIP3 (but not the CMIP5) models. Downscaling simulations are compared for 18-km grid regional and 50-km grid global models. Storm cases from the regional model are further downscaled into the Geophysical Fluid Dynamics Laboratory (GFDL) hurricane model (9-km inner grid spacing, with ocean coupling) to simulate intense hurricanes at a finer resolution.A significant reduction in tropical storm frequency is projected for the CMIP3 (-27%), CMIP5-early (-20%) and CMIP5-late (-23%) ensembles and for 5 of the 10 individual CMIP3 models. Lifetime maximum hurricane intensity increases significantly in the high-resolution experimentsby 4%-6% for CMIP3 and CMIP5 ensembles. A significant increase (+87%) in the frequency of very intense (categories 4 and 5) hurricanes (winds 59 m s(-1)) is projected using CMIP3, but smaller, only marginally significant increases are projected (+45% and +39%) for the CMIP5-early and CMIP5-late scenarios. Hurricane rainfall rates increase robustly for the CMIP3 and CMIP5 scenarios. For the late-twenty-first century, this increase amounts to +20% to +30% in the model hurricane\u27s inner core, with a smaller increase (similar to 10%) for averaging radii of 200 km or larger. The fractional increase in precipitation at large radii (200-400 km) approximates that expected from environmental water vapor content scaling, while increases for the inner core exceed this level
2007: Simulation of recent multi-decadal increase of Atlantic hurricane activity using an 18-km regional model
A new 18-km-grid regional model successfully reproduces the observed multidecadal increase and interannual variations of Atlantic hurricane activity since 1980, using large-scale interior nudging toward the NCEP reanalysis. H urricane activity in the Atlantic basin increased markedly in the years 1995â 2000, compared with levels in the 1970s and 1980s. For example, the accumulated cyclone energy (ACE) index in the Atlantic has been above the 1951â2000 median for all years from 1995 to 2005 except for the El Niño years of 1997 and 2002 (e.g., Bell et al. 2006). The increase in activity since the early 1980s has been confirmed using homogenized satellite-based records (Kossin et al. 2007). Two recent seasons (2004 and 2005) have been exceptionally active in terms of U.S. landfalling hurricanes (particularly for the Florida and the Gulf Coast regions), compared to typical activity levels in recent decades (Landsea 2005). In this report we introduce a new regional atmospheric model designed to simulate full seasons of tropical cyclone (TC) activity in the Atlantic. By testing the model against observed interannual variability and trends, we hope to ïżœ Top: model outgoing longwave radiation snapshot (W m â2) illustrating scales of disturbances. Bottom: annual number (AugâOct) of North Atlantic basin hurricanes (1980â2005). See figures 2 and 5 for more information