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ABSTRACT

Global projections of intense tropical cyclone activity are derived from the Geophysical Fluid Dynamics

Laboratory (GFDL) High Resolution Atmospheric Model (HiRAM; 50-km grid) and the GFDL hurricane

model using a two-stage downscaling procedure. First, tropical cyclone genesis is simulated globally using

HiRAM. Each storm is then downscaled into the GFDL hurricane model, with horizontal grid spacing near

the storm of 6 km, including ocean coupling (e.g., ‘‘cold wake’’ generation). Simulations are performed using

observed sea surface temperatures (SSTs) (1980–2008) for a ‘‘control run’’ with 20 repeating seasonal cycles

and for a late-twenty-first-century projection using an altered SST seasonal cycle obtained from a phase 5 of

CMIP (CMIP5)/representative concentration pathway 4.5 (RCP4.5) multimodel ensemble. In general

agreement with most previous studies, projections with this framework indicate fewer tropical cyclones

globally in a warmer late-twenty-first-century climate, but also an increase in average cyclone intensity,

precipitation rates, and the number and occurrence days of very intense category 4 and 5 storms. While these

changes are apparent in the globally averaged tropical cyclone statistics, they are not necessarily present in

each individual basin. The interbasin variation of changes in most of the tropical cyclone metrics examined is

directly correlated to the variation in magnitude of SST increases between the basins. Finally, the framework

is shown to be capable of reproducing both the observed global distribution of outer storm size—albeit with a

slight high bias—and its interbasin variability. Projected median size is found to remain nearly constant

globally, with increases in most basins offset by decreases in the northwest Pacific.
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1. Introduction

The question of how tropical cyclone1 activity could

be altered by future anthropogenic warming (Knutson

et al. 2010; Christensen et al. 2013) is complicated by a

number of factors. First, past observational data are of

limited use for enhancing confidence in future pro-

jections because it remains uncertain whether past

changes in any tropical cyclone metric exceed the level

expected from natural processes alone (Knutson et al.

2010). One exception to this assessment discussed by

IPCC (2013) concerns the likely role of anthropogenic

aerosol forcing (along with natural variability) in con-

tributing to a temporary decrease in Atlantic hurricane

activity during the 1970s and 1980s (e.g., Villarini and

Vecchi 2012, 2013; Dunstone et al. 2013). A second issue

is that uncertainties in the patterns of future sea surface

temperature (SST) changes can lead also to uncer-

tainties in the associated tropical cyclone projections

(Zhao et al. 2009; Sugi et al. 2009; Knutson et al. 2013).

There is also an important dependence of tropical cy-

clone intensity on the vertical structure of atmospheric

temperature changes, for which at least some historical

data/reanalyses are likely to have important shortcom-

ings (Vecchi et al. 2013). Finally, numerous studies have

found that the relatively coarse grid global models, such

as those used in phase 3 of the Coupled Model Inter-

comparison Project (CMIP3; Meehl et al. 2007) or

phase 5 (CMIP5; Taylor et al. 2012) usually do not

produce very realistic climatological tropical cyclone

activity (Camargo et al. 2013) and are particularly de-

ficient at simulating very intense (category 4 and 5)

tropical cyclones. Our previous studies of tropical cy-

clones for the Atlantic basin (Bender et al. 2010;

Knutson et al. 2013) found that the simulated frequency

response of very intense tropical cyclones to climate

warming differs from that of weaker tropical cyclones:

the intense tropical cyclones tend to increase in fre-

quency whereas the weaker tropical cyclones tend to

decrease in frequency in these simulations, using a va-

riety of CMIP3 andCMIP5model scenarios as boundary

forcings. Thus, some form of downscaling, for example

by regional or global model time-slice experiments

(Murakami et al. 2012b; Knutson et al. 2013), statistical

downscaling (Zhao and Held 2010), or statistical/

deterministic downscaling (Emanuel et al. 2008; Emanuel

2013), has commonly been used to attempt to gain in-

sight into the response of tropical cyclone activity to

climate change despite the coarse-resolution limitations

of the CMIP3 and CMIP5 climate models.

In this study, the main focus will be on using a dy-

namical downscaling approach to investigate the re-

sponse of tropical cyclones in all basins to a climate

change scenario obtained from a multimodel ensemble

of CMIP5 models (RCP4.5 scenario). Our approach

closely follows that of Bender et al. (2010) and Knutson

et al. (2013) for the Atlantic basin, but extends this ap-

proach to all ocean basins, with some methodological

adjustments as discussed in the model description sec-

tion. Among other published studies of possible future

global tropical cyclone activity, that of Murakami et al.

(2012b) appears exceptional in terms of the dynamical

model’s capability of simulating very intense (category 4

and 5) tropical cyclones. However, even in that case, the

model used by Murakami et al. did not include ocean

coupling, in which a storm generates a ‘‘cold wake’’ in

the SST field, particularly when traveling over regions

with a relatively shallow mixed layer. This process can

be an important negative feedback on tropical cyclone

intensity (e.g., Bender and Ginis 2000; Lin et al. 2013),

which could possibly alter the tropical cyclone response

to climate change [although see Knutson et al. (2001) for

an early assessment of this mechanism showing little

effect]. Therefore the present study appears to be

unique in comparison to previously published tropical

cyclone global projection studies in that the models can

simulate very intense (category 4 and 5) storms in vari-

ous basins using relatively high spatial resolution near

the storm (as fine as 6 km) while including ocean cou-

pling as a negative feedback on intensity.

As a preliminary test of the downscaling approach, we

first simulate global tropical cyclone activity for the

years 1980–2008 using observed interannually varying

SST and sea ice distributions. Each of these 3081 simu-

lated tropical cyclones (compared to 2518 tropical

cyclones for the same period in observations) is then

downscaled into the Geophysical Fluid Dynamics

Laboratory (GFDL) hurricane model so that higher-

intensity storms (category 4 and 5) can be simulated and

compared with observations in each basin. For observed

storm tracks and intensity, we use the HURDAT and

Joint Typhoon Warning Centers (JTWC) tropical cy-

clone datasets, except as noted in the text. We then

simulate and compare present-day and late-twenty-first-

century climate conditions using two sets of 20-yr runs

based on a repeating seasonal cycle design (no inter-

annual variability) as described in section 2. Thus, in

summary, we perform three basic sets of experiments:

historical (with interannually varying SSTs), present-

day control (repeating seasonal cycle), and late-twenty-

first century (repeating seasonal cycle).

1We use the term ‘‘tropical cyclone’’ in this report to refer collec-

tively to tropical storms and hurricanes (i.e., to tropical cyclones with

intensities exceeding 17.5m s21), with the latter having intensities

greater than 33m s21 regardless of their basin of occurrence.
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2. Model description

We use a two-step downscaling procedure to simu-

late tropical cyclones in our study. First we use a global

atmospheric model (50-km grid spacing) forced by a

present-day or future climate SSTs, sea ice, and ap-

propriate greenhouse gas levels to obtain a distribution

of tropical cyclone genesis. Each tropical cyclone gen-

erated using this global model is then downscaled into

the GFDL hurricane model, which is a regional model

that uses multiple layers of nesting to focus resolution

on a single tropical cyclone (grid spacing as fine as 6km)

for the duration of the cyclone, beginning from the time

the cyclone first reaches tropical storm intensity in the

global model.

a. HiRAM C180 global model

The GFDL High Resolution Atmospheric Model

(HiRAMC180; 50-km grid) used to simulate the genesis

of tropical cyclones is described in Zhao et al. (2009).

Given the global SST distribution and evolution, this

model has a demonstrated ability to simulate the in-

terannual variability of tropical cyclone occurrence

quite realistically, especially in the Atlantic basin, but

also to a reasonable degree in the northeast and north-

west Pacific basins (Zhao et al. 2009).

To reduce the confounding influence of interannual

variability (‘‘noise’’) on our climate change sensitivity

runs, we run control (present day) and late-twenty-first-

century downscaling experiments using 20 repeating

identical seasonal cycles of SST and external forcings for

each climate regime, with the control seasonal cycle

based on the time average (1982–2005) of the HadISST

SST dataset (see Zhao et al. 2009). Thus we are not at-

tempting to model the effect of any climate change–

induced changes in interannual variability (e.g., El

Niño–Southern Oscillation) in our cyclone simulations.

For the late-twenty-first-century climate change runs,

the changes in SSTs, sea ice, and greenhouse gas con-

centrations from the control run conditions are based

on the difference between 20-yr mean climatologies

from the multimodel mean of the CMIP5 RCP4.5 sce-

nario for years 2081–2100 (i.e., late twenty-first century)

and years 2001–20 (i.e., present day). Note there is a

15-yr difference between the midpoint year of our con-

trol condition SSTs (1994) and the midpoint year of the

baseline ‘‘present-day’’ period for the RCP4.5 climate

change calculations (2010). Therefore if one assumes

the control case to be representative of conditions for

1994, rather than 2010, then the so-called late-twenty-

first-century scenarios would correspond approximately

to the 20-yr period centered on 2075 (rather than 2090)

as obtained from the CMIP5/RCP4.5 scenarios. For

these climate change perturbation experiments the

SST increase in the various tropical storm basins ranges

from 1.18 to 1.78C as discussed in more detail later in

this report.

The 13 CMIP5 climate models (RCP4.5 scenario) that

are used in our study are listed in Table 1. Our selection

of these 13 models was based on the availability of sea

ice concentration data at the time our multimodel en-

semble was constructed for our earlier study (Knutson

et al. 2013), and we have continued to use the same

models in the present study.

TABLE 1. Summary of the 13 CMIP5 (Taylor et al. 2012) global climate models used in this study to create the multimodel anomalies in

HiRAM (using SST and sea ice concentration). (Expansions of acronyms are available online at http://www.ametsoc.org/PubsAcronymList.)

Modeling center (or group) Model name

Canadian Centre for Climate Modeling and Analysis CanESM2

Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancees en

Calcul Scientifique

CNRM-CM5

Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate

Change Centre of Excellence

CSIRO-Mk3.6.0

Chinese Academy of Sciences, State Key Laboratory Numerical Modeling for Atmospheric Sciences and

Geophysical Fluid Dynamics

FGOALS-g2

NOAA Geophysical Fluid Dynamics Laboratory GFDL-CM3

NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2G

NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2M

Met Office Hadley Centre HadGEM2-ES

Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental

Studies, and Japan Agency for Marine-Earth Science and Technology

MIROC5

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The

University of Tokyo), and National Institute for Environmental Studies

MIROC-ESM

Max Planck Institute for Meteorology MPI-ESM-LR

Meteorological Research Institute MRI-CGCM3

Norwegian Climate Centre NorESM1-M
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b. GFDL hurricane model

The individual tropical cyclones detected in the

HiRAM C180 global model [see Zhao et al. (2009) for

details of the detection scheme] are rerun at enhanced

resolution, and with ocean coupling, using a version of

the operational GFDL hurricane model. The hurricane

model consists of a triply nested moveable mesh atmo-

spheric model coupled to the Princeton Ocean Model

(POM; Bender et al. 2007). The 58 latitude by 58 longi-
tude inner nest of the regional atmosphericmodel has, in

the version used in the present study, a horizontal grid

spacing of about 6 km (i.e., 1/188). The middle nest

covers an 118 3 118 region with a grid spacing of 1/68.
The high-resolution (inner and middle) nests move

along with the storm to maintain enhanced resolution in

the vicinity of the tropical cyclone. The stationary outer

domain spans 1158 in the east–west direction and 508 in
the north–south direction with a grid spacing of 1/28 and
is positioned for each tropical storm basin. The atmo-

spheric model physics has been modified from that used

in Bender et al. (2010) and Knutson et al. (2013) by

implementing the physics upgrades in the GFDL oper-

ational hurricane model adopted in 2012 (including

upgrades in cloud microphysics, cumulus parameteri-

zations, and boundary layer and surface physics). (See

http://www.nws.noaa.gov/os/notification/tin12-18gfdl_

aaa.htm for more details). The only exception is that

the inner-nest resolution in our experiments is set as 1/188
(;6km) and the criterion for large-scale condensation

was appropriately modified. The hurricane model ex-

periments were run for up to 15 days, which allowed the

entire tropical cyclone lifetime of almost all storms to be

simulated, including the landfalling stages.

The ocean coupling included in our experiments

provides an important physical process for the simula-

tions, allowing the tropical cyclone to influence the

ocean and generating a cold wake in the SSTs, which

can in turn affect the cyclone’s intensity. As in the op-

erational prediction version of the model, the GFDL

hurricane model’s atmospheric component was coupled

to a one-dimensional version of the POM model for

all basins except the North Atlantic, where a three-

dimensional version was used. The ocean model was

initialized by the atmospheric analysis SST at the surface

and observed [U.S. Navy Generalized Digital Environ-

mental Data (GDEM)] climatology below, using an

assimilation methodology that prevents convective in-

stability in any model layers (Yablonsky and Ginis

2008). The integrations were initiated at the first di-

agnosed time of tropical storm intensity for the HiRAM

global model and initialized by interpolation without

any synthetic vortex replacement (or bogusing), such

that the peak wind speed and radius of maximum wind

in GFDL hurricane model at the initial time is the same

as that found in HiRAM. It is possible that some in-

cipient disturbances that failed to develop in the

HiRAM simulation would have developed into at least

tropical storms had they been initialized as weak dis-

turbances in the GFDL hurricane model. Thus we are

relying on the HiRAM solution to define the number of

tropical cyclone cases to downscale. For the climate

change experiments, we assumed that the ocean mixed

layer depth (defined here as the maximum depth at

which the ocean temperature is no more than 0.58C
lower than at the surface) was unchanged in the

warmer climate. That is, the SST change from the cli-

mate models was applied through the entire mixed

layer. Below the mixed layer, this warming perturba-

tion was tapered to zero, with the tapering adjusted so

that the vertical temperature gradient did not exceed

0.048Cm21 (following Yablonsky and Ginis 2008). A

recent study Huang et al. (2015) suggests that in-

cluding the enhanced vertical gradient of upper ocean

surface temperature from CMIP5 late-twenty-first-

century simulations can reduce substantially the in-

tensification of TCs with climate change relative to a

case with no change in vertical gradient. While our

experiments include an enhanced vertical gradient

beneath the mixed layer, a more detailed comparison

with the findings of Huang et al. is a subject of a future

study. Note that the cold wakes generated by the

storms are only affecting the high-resolution nested

experiments. The storms do not feed back onto SSTs in

HiRAM. The original climate models would have in-

cluded some impact of simulated tropical cyclones on

the ocean, although those storms were much less in-

tense and distributed differently in time than those in

the dynamical downscaling framework analyzed here;

thus, we expect any impact of this effect on our results

to be small.

3. Simulated versus observed tropical cyclone
activity

In this section, we compare simulated and observed

tropical cyclone activity in terms of annual counts,

tracks, intensity distribution, precipitation distribution,

and storm size. Tropical cyclone activity as simulated for

the years 1980–2008 using interannually varying ob-

served SSTs is first summarized in Fig. 1. The storm

tracks from theHiRAMC180 global model (Fig. 1b) are

quite realistic in their geographical distribution, al-

though there are some deficiencies apparent in the

model simulation such as too few hurricane-strength

tropical cyclones over the northeast Pacific basin, Bay of
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Bengal, and the southeast Indian Ocean basins. A well-

known deficiency of the HiRAMC180 model is that the

upper-limit intensity for the simulated tropical cyclones

is effectively about category 1 or 2 depending on the

basin. While this has been partly addressed at least for

the Atlantic basin, using a statistical refinement pro-

cedure (Zhao and Held 2010), in the present paper we

use dynamical downscaling into the GFDL hurricane

model to simulate a more realistic intensity distribution

for the present-day climate. Themap of simulated tracks

following the second downscaling step (Fig. 1c) shows a

much better agreement with observations for intense

hurricanes than the HiRAM simulation, although even

for the higher-resolution model a clear deficiency (un-

derestimate) of the number of category 5 tropical cy-

clones remains.

Tropical cyclone annual count statistics globally and

by basin for the model versus observations are sum-

marized in Table 2. TheHiRAMmodel simulates more

total tropical cyclones (categories 0–5, or at least

tropical storm strength) than observed (106 vs 87 per

year), despite having criteria for counting as a tropical

cyclone that are stricter for the model (i.e., 3-day du-

ration at tropical storm strength required) than for

observations. There is a slight reduction in the number

of tropical cyclones in the GFDL hurricane model

downscaling simulations compared to the host HiRAM

model (104 vs 106 per year), which is mostly caused by

tropical cyclone cases failing to develop or lasting

fewer than three days at tropical storm strength in the

hurricane model downscaling runs. A few downscaling

cases failed because the case occurred too close to the

boundary of the regional model. The hurricane model

simulates more hurricanes (i.e., total hurricanes or

categories 1–5, also called cat 1–5; 89 vs 48 per year)

and major hurricanes (defined as categories 3–5, or cat

3–5; 42 vs 23 per year) than observed, but fewer very

intense hurricanes (i.e., categories 4 and 5 or cat 4–5; 13

FIG. 1. (a) Tracks of observed tropical cyclones for the years 1980–2008. (b) Simulated

tropical cyclone tracks for 1980–2008 obtained using HiRAM C180 running over observed

interannually varying SSTs (1980–2008). (c) Simulated tropical cyclone tracks obtained using

the GFDL hurricane model to resimulate tropical cyclone cases at higher resolution. These

cases in (c) used the HiRAM C180 simulation to provide initial conditions and boundary

conditions for the individual storm cases to the higher-resolution model. Storm categories on

the Saffir–Simpson scale are depicted by the track colors, varying from tropical storm (blue) to

category 5 (black; see legend). The numbers in parentheses above each panel denote the total

number of storms found.
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vs 15 per year) than observed. It is notable that the

hurricane model has a slight low bias in cat 4–5 hurri-

cane frequency despite an overall high bias in the total

number of tropical cyclones and hurricanes in the

simulation. [Note that for convenience, we use the term

‘‘hurricane’’ here to describe tropical cyclones with

intensities greater than 33m s21 regardless of their

basin of occurrence.]

Table 2 also contains a summary of the correlation

between the observed and simulated time series of an-

nual storm counts of various classes, globally and for

each basin. For both HiRAM and the GFDL hurricane

model, the total tropical cyclone (defined as categories

0–5, or cat 0–5) simulated numbers are significantly

correlated (r . 0.31) to observed in the North Atlantic,

northeast Pacific, and northwest Pacific basins, but this is

not the case for the remaining three basins or the global

mean series. For higher-intensity classes (e.g., hurri-

canes, major hurricanes, and cat 4–5 hurricanes) the

GFDL hurricane model simulations are significantly

correlated with observations for the same three basins

for (cat 1–5) hurricanes (North Atlantic, northeast Pa-

cific, and northwest Pacific); for major (cat 3–5) hurri-

canes, the North Atlantic and northeast Pacific are

significantly correlated; and for very intense hurricanes

(cat 4–5), only the North Atlantic is significantly corre-

lated with observations. The highest annual correlation

found in our experiments was r 5 0.75 for major hurri-

canes in the northeast Pacific basin.

The simulated frequency distributions of tropical cy-

clone intensity (Fig. 2) show reasonable agreement with

observations for the North Atlantic and northwest Pa-

cific basins, except for wind speeds greater than 65m s21.

There is some disagreement between two different

observational datasets for the northwest Pacific basin,

with the JTWC dataset having a greater occurrence of

intense typhoons (.55m s21) than the Japanese Me-

teorological Agency (JMA) dataset, as has been noted

in previous studies (e.g., Song et al. 2010). The model’s

distribution is closer to the JMA estimates, especially

for storms exceeding 50m s21 maximum intensity.

Nonetheless, on the basis of these comparisons and

available information on the observed datasets, we

suspect that our model is underestimating the occur-

rence of very intense typhoons in the northwest Pacific

basin. The modeled intensity distribution is more

peaked than the observed in the northeast Pacific,

south Indian, north Indian, and southwest Pacific ba-

sins, with an unrealistically peaked distribution mode

around 50m s21. The pronounced bimodal distribution

TABLE 2. Tropical cyclone frequency statistics from downscaling experiments using observed SSTs for 1980–2006.Means are the annual

counts for various storm categories. Correlations are for the observed vs modeled interannual variations. Bold correlation entries are

significantly greater than zero at the 0.05 level (one-sided test), assuming individual years are temporally independent (i.e., exceed

a critical value of 0.32). ‘‘Cat’’ refers to the Saffir–Simpson intensity category (1–5) with ‘‘cat 0’’ signifying less than hurricane strength.

Variable Global

North

Atlantic

Northeast

Pacific

Northwest

Pacific

North

Indian

South

Indian

Southwest

Pacific

No. tropical cyclones (cat 0–5)

Observed mean 86.7 11.9 16.5 26.6 4.8 16.8 10.1

C180 mean 105.5 13.0 18.6 35.1 6.0 18.1 14.6

Hurr. model mean 104.1 12.7 18.2 34.9 5.8 18.0 14.5

Correlation: C180 vs obs. 0.08 0.48 0.51 0.49 0.06 0.09 0.23

Correlation: Hurr. model vs obs. 0.06 0.47 0.50 0.49 0.15 0.09 0.21

No. hurricanes (cat 1–5)

Observed mean 48.0 6.6 9.1 17.0 1.4 8.7 5.2

C180 mean 34.8 4.6 3.5 16.9 1.0 4.2 4.5

Hurr. model mean 88.6 10.0 15.1 31.0 4.8 15.2 12.5

Correlation: C180 vs obs. 20.08 0.65 0.29 0.28 0.09 20.08 20.11

Correlation: Hurr. model vs obs. 0.06 0.53 0.58 0.41 0.30 0.15 0.13

No. hurricanes (cat 3–5)

Observed mean 23.4 2.6 4.3 9.2 0.6 4.5 2.3

C180 mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Hurr. model mean 42.4 3.5 5.8 18.2 2.1 6.4 6.4

Correlation: C180 vs obs. 20.39 0.0 0.0 20.26 0.0 0.0 0.0

Correlation: Hurr. model vs obs. 0.27 0.52 0.75 0.28 0.29 20.10 20.21

No. hurricanes (cat 4–5)

Observed mean 15.3 1.6 2.7 6.9 0.4 2.6 1.2

C180 mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Hurr. model mean 12.7 1.1 0.9 7.6 0.5 1.0 1.7

Correlation: C180 vs obs. 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Correlation: Hurr. model vs obs. 0.08 0.40 0.24 0.21 20.25 20.07 20.01
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for observations in the north Indian basin is not re-

produced by our model.

Figure 3 shows the joint distribution of simulated in-

tensities as a scatterplot of central pressures and maxi-

mumwind speeds.While theHiRAMC180model (green

dots) simulates relatively low central pressures—at least

as low as are simulated by the higher-resolution GFDL

hurricane model (aqua dots)—the HiRAM C180 does

not simulate maximum surface wind speeds above about

55ms21 in our experiments. This contrasts with the

hurricanemodel, which simulates maximum surface wind

speeds in some cases of over 70ms21 for present-day

FIG. 2. Comparison of observed (black) and simulated (red) distributions of tropical cyclone

intensity (maximum surface winds speed in m s21) based on one value per storm at the time of

the storm’s maximum intensity (1980–2008 observations or SST conditions for the model).

Distributions are shown for various tropical cyclone basins. Simulated results were obtained

using the GFDL hurricane model for the final downscaling step. For the northwest Pacific

basin, observed distributions from two alternative data sources are included [Joint Typhoon

Warning Centers (JTWC) and Japanese Meteorological Agency (JMA)]. Distributions are

normalized to relative frequency by dividing by the number of storms in each histogram bin by

the total number of storms observed or simulated for the basins.
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conditions. The purple and blue solid curves in Fig. 3

show the nonlinear (quadratic polynomial) best-fit curves

for the observed and simulated (GFDL hurricanemodel)

present-day wind–pressure data. These curves show that

the observed (global) wind–pressure relationship is well

captured in the GFDL hurricane model.

Figure 4 compares the modeled and observed area-

averaged rainfall, as a function of distance to the track

center, for the rainiest 10% of storms, following the

methodology of Villarini et al. (2014), which focused on

storms within 308 of the equator to reduce the influence

of extratropical stages on the results. Under this ap-

proach, the 10% of storms having the highest average

daily rainfall accumulation within a 58 radius around the

storm center were composited for both models and

observations, a procedure that tends to focus on the

storms with relatively high potential rainfall impact. The

model composite is compared to observations from

the Tropical Rainfall Measuring Mission (TRMM)

Multisatellite Precipitation Analysis (TMPA; Huffman

et al. 2007). Themodeled distribution exceeds the TRMM

estimate, with a peak value of up to 350mmday21 or

more at a radius of about 50–100km from the storm; this

compares to a peak of 150 to 250mmday21 for TRMM.

For North Atlantic landfalling cases, the GFDL hurri-

cane model rainfall has been compared with TRMM

estimates and observed rain gauge values (not shown;

Tuleya et al. 2007), which also indicated the hurricane

model overestimating rainfall—and the TRMM under-

estimating rainfall—near the storm center compared to

gauge values. The precipitation distribution for a com-

posite of tropical cyclones from HiRAM (not shown)

has a peak of about 200–270mmday21.

Following from recent work exploring outer storm

size (Chavas and Emanuel 2010; Kim et al. 2014), we

estimate the radius of 12m s21 surface winds (r12) from

the radial profile of the azimuthal wind at the lowest

model level for each time step. The azimuthal compo-

nent of the wind is chosen because it is the quantity

predicted by theory to decay to zero at some finite radius

(Emanuel 2004; Chavas et al. 2015); this property also

offers practical benefit when estimating the radius of

relatively small wind speeds in the outer circulation.

For the purposes of direct comparison with observa-

tions, r12 is estimated following the methodology un-

derlying the QuikSCAT-based radial wind profile

database (QSCAT-R) detailed in Chavas and Vigh

(2014) and summarized here. Storm latitude, longitude,

intensity, and translation vector are taken from track

data (model: collocated 6-hourly output; observations:

HURDAT2 in the Atlantic and northeast Pacific

basins, JTWC in all other basins interpolated to each

QuikSCAT pass time). To match QuikSCAT observa-

tions, which are only available over water, model data

over land are masked out. Next, from each available

tropical cyclone fix, radial wind profiles are calculated by

first subtracting from all data points an estimate of the

background flow vector (Lin and Chavas 2012) and then

decomposing the flow field into its azimuthal and radial

components in a polar coordinate system relative to

the storm center. All data are then averaged within an-

nuli of width Dr 5 18.55 km (i.e., 1/68) for the model and

Dr5 12.5 km for observations, moving radially outwards

from the center in increments of Dr/4. Finally, r12 is es-
timated moving radially outwards from the radius of

maximum winds.

Additionally, because accurate radial profile estima-

tion depends on having sufficient azimuthal data cov-

erage, for both observations and model simulations we

define a data asymmetry parameter as a function of ra-

dius, denoted j, as the magnitude of the vector mean of

all grid point distance vectors from the center. For small

Dr/r, j 5 0 for data with perfect azimuthal symmetry

(lower uncertainty) and j5 1 in the case of a single data

point (higher uncertainty). This parameter may be used

to select subsets of r12 values with sufficient azimuthal

coverage and thus lower uncertainty.

For a consistent comparison between model and ob-

servations, we apply an identical set of filters to both

datasets: 1) Vmax . 25ms21 to avoid particularly weak

storms, 2) j(r12) # 0.5, and 3) storm center latitude

FIG. 3. Scatterplot of tropical cyclone maximum wind speeds

(m s21) vs central minimum pressure (hPa or mb). Dots denote

single occurrences for observations (purple), GFDL hurricane

model control runs (aqua) and late-twenty-first-century projection

runs (black), or HiRAM C180 control runs (green) and late-

twenty-first-century projections (orange). Observations are shown

by the purple dots and curve. The smooth curves are least squares

quadratic best-fit lines through the data for the various cases. Note

that the observations are shown for the period 2001–12, while the

‘‘Control’’ simulations shown are based on climatological SST

conditions for 1982–2005.
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u # 308 to remove cases undergoing extratropical tran-

sition. Additionally, cases are removed if the storm center

is over land or if r12, 50km; the latter is imposed because

accurate decomposition of the flowvectors at small radii is

increasingly sensitive to the accuracy of the storm center

position, which is subject to errors particularly in obser-

vational analysis. The conclusions presented below are

not sensitive to variations in these parameters. The re-

sulting sample sizes are N 5 1324 (observations), N 5
40282 (control), and N 5 32998 (late twenty-first cen-

tury). Finally, observational data are binned into basins

defined by identical boundaries as used for the model.

Figure 5 displays the probability distributions of r12
for observations and both model simulations, shown

FIG. 4. Profiles of tropical cyclone precipitation rates (mmday21), averaged from the storm

center to the radius indicated on the abscissa (in degrees) based on the lifetime-average pre-

cipitation rate for the 10% rainiest tropical cyclones (see text). Results are compared for ob-

servations from TRMM satellite measurements (dashed) and the GFDL hurricane model

(solid) for downscaling experiments based initially on HiRAM C180 global atmospheric sim-

ulations obtained using observed interannually varying SSTs (1980–2008). Results are shown

for the (a) Northern and (b) Southern Hemisphere for various tropical cyclone basins (colors;

see legend).
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both globally and within each basin. First and foremost,

the control (present-day) simulation performs well in

reproducing the observations, both in terms of distri-

bution shape, which is approximately lognormal [similar

to the results of Chavas and Emanuel (2010)], and var-

iability. Indeed, the interbasin variability inmedian r12 is

surprisingly well captured in the model (Fig. 5, upper

right panel), albeit with a slightly high bias that is con-

sistent across all basins; themodelmedian overestimates

the observed value by 9.3% globally, with a range from

8.9% in the northwest Pacific to 32% in the north Indian

Ocean. Moreover, the model also adequately captures

intrabasin variability as measured by the coefficient of

variation (CV5 s/m), whose magnitude of 0.53 globally

compares well with the observed value of 0.49, in-

dicating significant variability in storm size within basins

as is seen in observations.

The above comparisons of simulated storm tracks,

intensity distribution, rainfall, and storm size distribu-

tions indicate that for all metrics there is room for

FIG. 5. Relative frequency of tropical cyclone size, globally and for various tropical cyclone basins (AL 5 North

Atlantic; EP5 northeast Pacific;WP5 northwest Pacific; NI5 north Indian; SI5 south Indian; and SP5 southwest

Pacific). The size metric, r12, is the radius at which the azimuthal-mean azimuthal wind speed decreases to 12m s21.

Black curves depict observed estimates based on QuikSCAT satellite measurements; blue and red curves depict

distributions based on model simulations for control (present day; blue) or warm climate (late twenty-first century;

red) conditions. The ‘‘X’’ marks on each diagram denote median values. The numbers listed on each diagram denote

the number of cases analyzed. The top right panel shows the global and interbasin variation of median tropical

cyclone sizes for this metric. Control runs are based on climatological SSTs for 1982–2005. See text for further details.
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improvement, but the results suggest that the model

simulation of present-day tropical cyclone activity is

adequate to justify an exploration of our downscaling

framework’s response to climate change scenarios for

the late twenty-first century, keeping in mind the de-

ficiencies noted in this section.

4. Late-twenty-first-century climate change
scenarios

a. Tropical cyclone genesis frequency changes

The changes in tropical cyclone genesis frequency for

the CMIP5/RCP4.5 late-twenty-first-century scenario

are summarized for each basin and globally in Table 3

(see also Fig. 1). Globally there is a reduction in tropical

cyclone genesis (216%), consistent with previous global

warming studies using the HiRAM C180 model (e.g.,

Zhao et al. 2009), andwith numerous pre-CMIP5 studies

by various groups using global atmospheric or coupled

models (e.g., Knutson et al. 2010; Christensen et al.

2013). The projected reduction is generally consistent

with a more recent analysis of CMIP5 climate model

projections using an empirical tropical cyclone detection

method (Tory et al. 2013), who found a 7%–28% re-

duction in tropical cyclone frequency across eight

CMIP5models that had reasonable present-day inferred

tropical cyclone climatology. However, our model’s

simulated decrease is in contrast to the 10%–40% global

increase in late-twenty-first-century tropical cyclone

TABLE 3. Tropical cyclone activity (percent change) statistics from downscaling experiments for CMIP5 multimodel ensembles (future

vs present day). The future scenarios use RCP4.5 averaged conditions for late twenty-first century and are compared to the ‘‘present-day’’

simulations for 1982–2005 climatological SST conditions. ‘‘Cat’’ refers to Saffir–Simpson intensity category (1–5) with ‘‘cat 0’’ signifying

less than hurricane strength. Rain rate is the average rain rate within 100 km of the storm center, including all tropical cyclones (not just

10% rainiest). PDI is power dissipation index in units of 109m3 s22. ‘‘Hur (wind . 65)’’ refers to hurricanes with surface wind speeds

greater than or equal to 65m s21. ‘‘Maxwnd_tc’’ and ‘‘maxwnd_hur’’ are percent changes of mean lifetime-maximum intensities for all

tropical cyclones (wind speed. 17.5m s21) or hurricanes (wind speed. 33m s21). The p values, for a null hypothesis of no change from

present to future, are given in the line below each percent change entry. These use a two-sided Mann–Whitney–Wilcoxon test for all

frequency or days-of-occurrence metrics, and a one-sided test (for increase) for the intensity and rain rate metrics. Bold values indicate

significance at the p , 0.05 level. ‘‘Inf’’ refers to cases where no occurrences were simulated in the present-day run while some were

simulated in the future runs, indicating an infinite percent increase.

Variable Global

North

Atlantic

Northeast

Pacific

Northwest

Pacific

North

Indian

South

Indian

Southwest

Pacific

No. of TC (cat 0–5) 216.4 29.4 16.3 234.5 19.5 226.1 236.6

p value ,0.01 0.39 0.02 ,0.01 0.07 ,0.01 ,0.01
No. of hur (cat 1–5) 216.6 217.5 19.3 231.6 25.6 228.4 240.6

p value ,0.01 0.16 0.01 ,0.01 0.04 ,0.01 ,0.01

No. of hur (cat 3–5) 1.8 2.7 83.7 216.9 21.7 28.3 250.6
p value 0.72 0.76 ,0.01 ,0.01 0.14 0.42 ,0.01

No. of hur (cat 4–5) 28.3 42.1 337.5 26.5 200.0 63.6 258.3

p value ,0.01 0.63 ,0.01 0.59 20.05 0.07 0.01

No. of hur (wind . 65) 59.3 125.0 Inf 16.7 Inf Inf 0.0

p value 0.01 0.36 0.63 1.00

ACE 213.1 29.7 44.2 226.9 23.2 228.8 241.7

p value 0.15 0.29 ,0.01 ,0.01 0.13 ,0.01 ,0.01

PDI 29.7 23.1 52.7 222.7 28.6 226.6 243.9
p value ,0.01 0.53 ,0.01 ,0.01 0.08 ,0.01 ,0.01

maxwnd_ts 3.6 0.4 8.2 7.4 3.4 1.8 25.6

p value ,0.01 0.41 ,0.01 ,0.01 0.07 0.20 0.98

maxwnd_hur 4.1 4.5 7.8 5.5 1.6 3.3 23.1

p value ,0.01 0.04 ,0.01 ,0.01 0.23 0.03 0.88

Cat 4–5 days 34.5 175.4 478.1 9.7 405.0 55.4 252.5

p value ,0.01 0.14 ,0.01 0.50 0.04 0.39 0.03
Rain rate_tc (cat 0–5) 14.3 17.3 17.2 20.8 10.5 8.5 21.2

p value ,0.01 ,0.01 ,0.01 ,0.01 0.01 0.03 0.66

Rain rate hur (cat 1–5) 13.4 20.5 14.4 15.5 12.8 11.1 3.5

p value ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 ,0.01 0.58

Rain rate hur (cat 3–5) 8.8 14.0 9.7 9.7 10.8 6.1 10.6

p value ,0.01 0.02 ,0.01 ,0.01 ,0.01 ,0.01 0.65

Rain rate hur (cat 4–5) 7.7 9.4 11.4 8.7 21.4 21.5 15.3

p value ,0.01 0.13 ,0.01 ,0.01 0.06 0.54 0.93

Delta SST (8C) 1.546 1.685 1.567 1.551 1.384 1.145
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frequency projected byEmanuel (2013) using a statistical–

deterministic framework with CMIP5 RCP8.5 projec-

tions. The projections in Emanuel (2013) and Tory et al.

for the late twenty-first century used subsets of CMIP5

models that were different from those included in our

study, and both of those studies were based on a

downscaling of the stronger climate forcing (RCP8.5)

scenario.

As shown by Held and Zhao (2011), the reduction in

tropical cyclone frequency in HiRAM includes a con-

tribution from the direct effect of increasing atmo-

spheric CO2 (with SST held fixed). Their finding and

that of Zhao et al. (2013) confirm the earlier findings of

Yoshimura and Sugi (2005). Zhao et al. (2013) show that

for the seven models they examined, the CO2-induced

reduction in genesis frequency is even more robust

across models than the reduction in genesis frequency

associated with a 2-K uniform SST warming alone. The

physical mechanism producing the global reduction in

tropical cyclone frequency in the various model pro-

jections is still unclear, but possible mechanisms

include a slowing of the large-scale tropical circulation

(Sugi et al. 2002; Bengtsson et al. 2007) due to mecha-

nisms as discussed in Knutson and Manabe (1995) and

Held and Soden (2006) or increases in the saturation

deficit between the surface and middle troposphere

(Emanuel et al. 2008). A recent discussion of the fre-

quency reduction issue is given in Sugi et al. (2012).

The reduced global genesis frequency in the RCP4.5

experiments is reflected in a reduction in four of the six

major tropical cyclone basins (North Atlantic, north-

west Pacific, south Indian, and southwest Pacific). An

increase is simulated for the northeast Pacific and north

Indian Ocean basins. An increase is also simulated for

the South Atlantic basin (Fig. 1), although this basin

is a special case where the historical occurrence is quite

rare (e.g., Catarina in 2004); moreover, the HiRAM

C180 seems to overestimate present-day genesis rate

there (cf. Figs. 1a and 1b), implying that quantitative

projections of increases for this basin should be viewed

with caution.

b. Storm intensity changes

Figure 3 shows that both HiRAM and the GFDL

hurricane model have a slightly expanded range of high

intensities for the warmer climate conditions, consider-

ing all basins as an aggregate global distribution. This is

shown by the occurrence of black dots and orange dots

on Fig. 3 at the upper right edges of the scatterplot re-

gion, extending beyond the green and aqua-colored dot

regions, respectively.

The influence of climate warming on the simulated

intensity distributions is seen more clearly in Fig. 6. This

figure compares the globally aggregated distributions of

tropical cyclone intensities for the present-day and

warm-climate conditions, for both the HiRAM C180

and GFDL hurricane models. Despite the global re-

duction in number of tropical cyclones for the warmer

climate, the GFDL hurricane model shows an increase

in the number of very intense tropical cyclones, with a

‘‘cross-over point’’ from decreased to increased fre-

quency at an intensity of around 55–60m s21. This in-

creased occurrence of higher maximum intensities is

difficult to discern in the HiRAM C180 distribution,

even after the distributions are normalized by the total

number of storms (Fig. 6b). On the other hand, for the

GFDL hurricane model, such a normalization of the

distribution makes the increased relative occurrence at

high intensity much more apparent. The average in-

tensity of all tropical cyclones (cat 0–5) in the GFDL

hurricane model increases by 3.6% globally (Table 3),

while the average intensity of all tropical cyclones (cat

1–5) that exceed hurricane intensity (33ms21) increases

FIG. 6. As in Fig. 2, but comparing (a) total or (b) normalized

frequency distributions of maximum surface wind intensities

(m s21, one value per storm) for simulations using present-day

(control) or CMIP5/RCP4.5 late-twenty-first-century (warming)

climate conditions (see legend) for all TC basins. Simulation results

are shown for HiRAM C180 (purple, aqua) and for the GFDL

hurricane model downscaling (red, dark blue).
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by 4.1%. For HiRAM, the average intensity of all

tropical cyclones increases by 0.4% globally, while the

average intensity of all tropical cyclones that exceed

hurricane intensity increases by 0.7%. The larger in-

tensity increases we find for the GFDL hurricane model

(compared to HiRAM) are relatively more consistent

with previous studies for the Atlantic basin (Hill and

Lackmann 2011; Knutson et al. 2013) and for the globe

(Oouchi et al. 2006; Murakami et al. 2012b) that used

relatively high-resolution modeling frameworks (2–9-km

grid spacing for theAtlantic studies; 20-km grid spacing

in Oouchi et al. and Murakami et al.).

The results in Table 3 indicate that the projected in-

tensity increases noted above for the global distributions

do not occur in all basins. For tropical cyclones ex-

ceeding tropical storm or hurricane intensity (greater

than 17.5 or 33m s21, respectively), the average intensity

decreases in the southwest Pacific basin by 25.6%

and 23.1%, respectively. The average intensity of hur-

ricanes increases in the Atlantic by14.5%, although the

average intensity of all tropical cyclones combined

barely changes (10.4%) in the Atlantic basin. The basin

with the most pronounced intensity increases is the

northeast Pacific (18% for all tropical cyclones and also

for hurricanes). The northwest Pacific basin also has

statistically significant projected maximum intensity in-

creases of 17% for all tropical cyclones and 16% for

hurricanes.

c. Storm track and occurrence changes

While tropical cyclone genesis rates are important,

metrics that are even more closely tied to impacts in-

clude the storm tracks and maps of storm occurrence

rates. Additionally, a small number of very intense storms

have caused a disproportionate amount of damage his-

torically (e.g., Pielke et al. 2008). The tracks of all storms

that reach at least category-4 intensity (.58ms21) in the

present-day and late-twenty-first-century simulations

are shown in Fig. 7. The global increase in the number of

these storms is 128% (244 storms in the control versus

313 storms in the late-twenty-first-century simulation).

A reduction is apparent in the southwest Pacific basin

(258%; Table 3). The basin with the largest fractional

increase is the northeast Pacific (1338%) although sub-

stantial increases are also projected in the Atlantic

(142%), north Indian (1200%), and south Indian

(164%) basins. Focusing on the strongest category of

storm in our simulations (maximum surface wind speeds

exceeding 65ms21), Table 3 shows that the global fre-

quency increases by 59%,with increases in all basins except

the southwest Pacific, where there is no change in projected

frequency; however, the annual number of storms of this

intensity is very limited in our simulated study (increasing

from 2.7 to 4.3yr21).

An alternative metric that incorporates the duration

of storms at category 4 and 5 intensity is the number of

FIG. 7. Tracks of simulated cat 4–5 tropical cyclones for (a) present-day or (b) late-twenty-

first-century (RCP4.5; CMIP5 multimodel ensemble) conditions. Simulated tropical cyclone

tracks were obtained using the GFDL hurricane model to resimulate (at higher resolution) the

tropical cyclone cases originally obtained from the HiRAM C180 global mode. Storm cate-

gories or intensities are shown over the lifetime of each storm, according to the Saffir–Simpson

scale. The categories are depicted by the track colors, varying from tropical storm (blue) to

category 5 (black; see legend).
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cat 4–5 days. This metric is projected to increase by 35%

globally (Table 3), in comparison to the 24% increase in

number, indicating that the average time duration per

cat 4–5 storm that is spent at intensities above the

category-4 threshold is also increasing in the warm cli-

mate simulation. The sample of 244 (control) or 313

(late twenty-first century) cat 4–5 storms in our simula-

tions is a large enough sample for us to investigate some

of the regional patterns of change in occurrence. Thus,

the regional patterns of changes in tropical cyclone oc-

currence and of cat 4–5 storm occurrence are shown in

Figs. 8 and 9, respectively. Most of the northeast Pacific

and north Indian Ocean have increased tropical cyclone

occurrence in the late-twenty-first-century simulation

(Fig. 8), while most of the remainder of the globe has a

decrease. Considering cat 4–5 storm occurrence (Fig. 9),

most of the north IndianOcean, northeast Pacific, North

Atlantic, and southwest Indian Ocean regions show an

increase. A small region off the coast of Brazil also

shows an increase but this is due to a single intense storm

in the late-twenty-first-century runs (Fig. 7). The areas

of decreased cat 4–5 occurrence (Fig. 9) include most of

the southwest Pacific basin and parts of the eastern In-

dian Ocean basins. In the northwest Pacific basin, the

southern section of the basin has some areas of decrease,

while the northern and eastern sections of this basin

show increases suggestive of an expansion of the range

of cat 4–5 occurrence. In terms of percent changes in cat

4–5 occurrence, there are also large percent increases

projected for a number of basins (Table 3), especially in

some basins where the rate of occurrence is relatively

small in the control climate. The absolute changes of cat

FIG. 8. Simulated occurrence of all tropical storms (tropical cyclones with winds exceeding

17.5m s21) for (a) present-day or (b) late-twenty-first-century (RCP4.5; CMIP5 multimodel

ensemble) conditions; unit: storms per decade. Simulated tropical cyclone tracks were obtained

using the GFDL hurricane model to resimulate (at higher resolution) the tropical cyclone cases

originally obtained from the HiRAM C180 global mode. Occurrence refers to the number of

days, over a 20-yr period, in which a storm exceeding 17.5m s21 intensity was centered within the

108 3 108 grid region. (c) Difference in occurrence rate between late twenty-first century and

present day [(b) minus (a)]. White regions are regions where no tropical storms occurred in the

simulations [in (a) and (b)] or where the difference between the experiments is zero [in (c)].
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4–5 storm occurrence (in storms per decade; Fig. 9) are

more evenly distributed across the tropics. A number of

regions show projected increases in cat 4–5 occurrence

but decreases in overall tropical cyclone occurrence

(Figs. 8 and 9). Among these are most of the North

Atlantic basin and much of the northwest Pacific basin.

The north Indian Ocean shows a significant projected

increase in hurricane-force tropical cyclone frequency

and cat 4–5 occurrence days (Table 3).

Figure 10 shows the distribution of projected SST

changes used in our downscaling experiments for the

main tropical cyclone activity months for the Northern

and Southern Hemisphere basins, taken as the July–

November and January–May seasons, respectively. The

SST increases are relatively less in regions with strong

decreases in tropical cyclone and cat 4–5 occurrence

(e.g., southwest Pacific basin) and are relatively greater

in regions with strong increases, such as the northeast

Pacific basin. This is illustrated quantitatively in the

bottom panel of Fig. 10, which contains a scatterplot of

relative SST change versus percent change in hurricane

occurrence at each grid point in the domain 308N–308S.

For this analysis, relative SST is defined as the local SST

change at a grid point for the appropriate season (July–

November or January–May) compared to the average

SST change over 308N–308S for that same season. The

relation of relative SST to tropical cyclone potential

intensity has been previously illustrated in Vecchi and

Soden (2007). The grid point by grid point correlation of

hurricane occurrence changes in the hurricane model

versus relative SST changes for the season is 0.63. For

tropical cyclone occurrence (not shown) the correlation

is 0.45. Thus relative SST changes appear to be impor-

tant in statistically describing the spatial patterns of

tropical cyclone and hurricane occurrence changes in

the GFDL hurricane model downscaling.

Aggregate measures of tropical cyclone activity such

as accumulated cyclone energy (ACE) or the power

dissipation index (PDI) incorporate frequency, in-

tensity, and duration characteristics. These are formed

by summing the maximum surface wind intensity of a

storm—raised to the second power for ACE and to

the third power for PDI—at each 6-hourly period,

then summing over all storms occurring during the

FIG. 9. As in Fig. 8, but for tropical cyclones of at least category-4 intensity (surface winds of at

least 59m s21).
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FIG. 10. SST difference (CMIP5/RCP4.5 late twenty-first century minus present day) used in the tropical cyclone dynamical down-

scaling experiments for the (a) July–November or (b) January–May seasons (units: 8C). (c) Scatterplot of percent change in hurricane (cat

1–5) occurrence frequency vs relative SST difference for each 108 3 108 grid box (308N–308S) that had nonzero hurricane occurrence in

both control andwarm climate simulations. Relative SST differences are from (a) for all NorthernHemisphere basin points (red) and from

(b) for all Southern Hemisphere basin points (blue) shown in (c), and are relative to the average SST change over 308N–308S.

7218 JOURNAL OF CL IMATE VOLUME 28



period/region of consideration. For our earlier downscaling

studies with the GFDL hurricane model (e.g., Bender

et al. 2010; Knutson et al. 2013), we did not assess the

ACE or PDI changes for the high-resolution runs be-

cause the experiments were limited to 5 days duration.

Since we have now expanded the runs to up to 15 days in

length per storm we can more reasonably analyze these

metrics. Both ACE and PDI decrease globally, by213%

and 210%, respectively (Table 3). This reflects the par-

tially offsetting influences of decreased overall storm

frequency and increase in average storm intensity, with

the reduction in frequency apparently being the domi-

nating influence. At the basin scale, four of the six major

basins have a simulated decrease while two (the northeast

Pacific and north Indian basins) have a projected increase.

d. Storm-related precipitation rate changes

Figure 11 shows the changes in precipitation in

simulated tropical cyclones as a function of radius,

considering the 10% rainiest storms globally in each

set of experiments. A clear increase is seen in the warm

climate storms. Table 3 presents some summary sta-

tistics for tropical cyclone rain rates, averaged within

100 km of the storm center, considering tropical cy-

clones of various intensity classes and including all

tropical cyclones—not just the 10% rainiest storms.

Globally, this metric increases by 14% for tropical

cyclones of at least tropical storm intensity and 13%

for hurricanes. Comparable statistics for individual

basins are also shown in Table 3. Considering all

tropical cyclones, the precipitation rate increases in all

basins except for the southwest Pacific basin, which

shows a slight decrease (21.2%). Notably, this basin is

also the single basin that has a decrease in average

storm intensity (25.6%) and the largest percentage

decreases in tropical cyclone, hurricane, and intense

hurricane occurrence (Table 3).

Figure 12 shows the percent change in precipitation

rate as a function of averaging radius (i.e., precipita-

tion averaged over a disk of the given radius) for

the various basins, considering all tropical cyclones.

The dotted line in each panel gives an indication of the

change in large-scale environmental water vapor in

the basin, here approximated as 7% times the average

SST change in the basin, based on the approximate rate

of increase of saturation vapor pressure with temper-

ature at surface temperatures characteristic of the

lower troposphere (e.g., Held and Soden 2006). The

enhanced percentage increase in precipitation rate

near the storm center, which was prominently seen for

our Atlantic tropical cyclone downscaling experiments

in Knutson et al. (2013), is not seen in all of the indi-

vidual basins in this study, nor was it evident in future

projected tropical cyclone precipitation rates for

landfalling storms over the eastern United States

(Wright et al. 2015). The percent change in pre-

cipitation rate is typically similar to the water vapor

scaling (7% times the SST change). Notable exceptions

include the northeast Pacific and near the storm center

(within 150 km) in the northwest Pacific, where the

precipitation rate increase exceeds the water vapor

scaling, and the southwest Pacific, where the pre-

cipitation rate increase is systematically less than the

water vapor scaling. These two basins are where the

SST increases are largest and smallest, respectively,

and where the intensity increase is greatest or decrease

is greatest, respectively. The results suggest that in

addition to the background water vapor content, the

precipitation rate increase is enhanced by dynamical

(convergence) increases, particularly in regions with

large relative SST changes, and the precipitation rate

can decrease in regions where the intensity change is

negative and the relative SST change is negative. The

relation of precipitation rate changes to relative SST

FIG. 11. Profiles of tropical cyclone precipitation rates (mmday21), for the 10% rainiest

tropical cyclones (308N–308S) as in Fig. 4, but for the control runs (present day; blue curve) or

the warming runs (late-twenty-first-century RCP4.5 projection; red curve).
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changes in the various basins will be examined further

later in this report.

e. Storm size changes

In addition to intensity and track, storm size also plays

an important role in modulating tropical cyclone dam-

age (Zhai and Jiang 2014). Changes in size due to the

warming scenario simulated here are shown in Fig. 5.

Globally, median storm size stays nearly constant

(11%); the change in mean of the log-transformed data

is not statistically significant at the 5% level based on a

Welch’s two-sample t test. Although the change in me-

dian size is negligible globally, this is not the case when

looking across basins, where a decrease is found in the

northwest Pacific (28%), with no statistically significant

change in the north Indian basin and small increases in

all other basins (17% to 115%); the differences in

sample size allow the northwest Pacific signal to balance

those of the other basins. Notably, the two largest shifts

are found in the northeast Pacific (115%) and North

Atlantic basins (111%). The finer-grain details of

changes in size will be explored in a future study.

FIG. 12. Percent change (warm climate minus con-

trol) in tropical cyclone precipitation as a function of

averaging radius from the storm center, for all tropical

cyclones in each basin. The dotted line, computed as

the SST change over the basin multiplied by 7% 8C21,

approximates the increase in atmospheric water vapor

content in the basin associated with the SST warming,

assuming negligible change in relative humidity.
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5. Discussion and conclusions

Using a two-step downscaling framework and the

GFDL hurricane model, we have improved the intensity

distributions of simulated tropical cyclones compared to

the host HiRAMmodel. HiRAMC180 provides a fairly

realistic tropical cyclone genesis distribution as the ini-

tial step in the downscaling but fails to capture tropical

cyclones with winds of category 4 and 5 intensity, which

we believe is important for late-twenty-first-century

climate change projection studies. The inclusion of

ocean coupling in our framework provides an important

additional physical process that is not included in most

other climate impacts studies. Moreover, this frame-

work reproduces fairly well both the observed global

distribution of storm intensity and outer storm size and

their interbasin variability. The dynamical downscaling

framework then provides a scenario-based assessment,

including for very intense tropical cyclones, of changes

in tropical cyclone frequency, precipitation, size, and

intensity characteristics in response to the large-scale

climate change (late twenty-first century) projection as

simulated by a CMIP5 13-model ensemble using the

RCP4.5 scenario.

Salient features of the late-twenty-first-century pro-

jected changes include a substantial reduction in global

tropical cyclone frequency (216%), but an increase in

the frequency of the most intense storms (124% for cat

4–5 and159% for tropical cyclones withmaximumwinds

exceeding 65ms21). The tropical cyclone frequency re-

duction is a relatively robust projection identified in

previous studies (Knutson et al. 2010; Murakami et al.

2012a,b; Mallard et al. 2013; Zhao et al. 2013). The

projected increased frequency of very intense tropical

cyclones is consistent with the results from earlier down-

scaled studies using theGFDLhurricanemodel that were

confined to only the Atlantic basin (Bender et al. 2010;

Knutson et al. 2013) and with the global model study of

Murakami et al. (2012b) .There is a larger projected

fractional increase in the number of cat 4–5 days (135%)

compared to their frequency increase. Global averaged

intensity of tropical cyclones and hurricanes increased by

about 4%. Global aggregate activity measures (ACE

and PDI) show decreases of213%and210%, indicating

the dominating influence of the overall tropical cyclone

frequency reduction over the influence of increased

average intensity. Our results are quite different from

the statistical–deterministic downscaling projections of

Emanuel (2013) for CMIP5 models. Emanuel’s pro-

jections include a large increase in global PDI and trop-

ical cyclone frequency over the twenty-first century.

Projected median storm size is found to remain nearly

constant globally in our projections.

In terms of regional distribution, the increase in pro-

jected cat 4–5 occurrence is fairly widespread in the

Northern Hemisphere basins (Fig. 9). Tropical cyclones in

general (cat 0–5), while decreasing in occurrence in the

majority of regions as well as the global average, still show

some regions of increase, particularly in the central and

eastern North Pacific including in the vicinity of Hawaii,

which is qualitatively similar to climate change projection

results reported in previous studies (Murakami et al. 2013).

There is also decreased cat 4–5 occurrence projected in

some areas, but these are more limited regions—notably

the southwest Pacific and eastern IndianOcean basins, and

parts of the northwest Pacific basin. Interestingly, the re-

gion of the southwest Pacific near northeast Australia,

which is one area of projected decrease in tropical cyclone

activity, including cat 4–5 storms, is also a region where

past data analysis indicates a downward trend in intense

tropical cyclone landfalls over the past century (Callaghan

and Power 2011). While results from the RCP4.5 forcing

scenario cannot be straightforwardly compared with an

historical forcing scenario, this finding may suggest the

possibility of detecting a human influence on tropical cy-

clone activity (i.e., a decrease) in this region on the basis

of a long (century scale) record of intense tropical cyclone

landfalls in northeast Australia. Projected median storm

size increases inmost basins, but this is offset by a decrease

in the northwest Pacific, resulting in a negligible increase

globally (11%). Notable increases occur in the northeast

Pacific (115%) and North Atlantic basins (111%) in

these simulations.

The tropical cyclone precipitation results shown here,

with a pronounced increase in the warmer climate, are

consistent with earlier studies (e.g., Knutson et al. 2010,

2013; Villarini et al. 2014). We do not find strong evi-

dence to support the enhanced rate nearer the storm

center as found by Knutson et al. (2013) for the Atlantic

basin. Additionally, our results (e.g., Table 3) suggest a

link between average tropical cyclone precipitation rate

change at the basin level and the simulated change in TC

intensity. A physical mechanism suggested by the results

(see alsoWang et al. 2015) is that enhanced tropospheric

water vapor in the warmer climate enhances moisture

convergence and thus rainfall rates, but that in a basin

where the average intensity of tropical cyclones de-

creases, the reduced tropical cyclone circulation in-

tensity can offset the higher water vapor content and

even produce a small decrease in tropical cyclone pre-

cipitation rates in that basin.

The projected tropical cyclone metric changes pre-

sented here vary by basin, with the interbasin spread being

explained to a large extent by variation between the re-

gions in the magnitude of SST change. This is illustrated

and summarized in Fig. 13, which contains scatterplots of
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the percent change in a number of tropical cyclonemetrics

by basin versus the average SST increase in the basins.

The size of SST increase in each basin (essentially the

relative SST change) appears to be a reasonable statistical

predictor of the interbasin variation of response in storm

frequency for various category storms, of ACE and PDI,

of maximum storm intensity, of cat 4–5 days, and of pre-

cipitation rates within 100km of storm center—the latter

FIG. 13. Scatterplots and linear correlations (r) of the percent change in various tropical cyclone metrics (warm

climate vs control) plotted against the average change in SST (warm minus control, in 8C) for each basin. Metrics

analyzed in each panel are identified in the text above each panel. Rainfall metrics are for all tropical cyclones for

the categories stated. See main text or the caption of Table 3 for further details.
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at least for tropical cyclones collectively and hurricanes

(cat 1–5). With the exception of the case for precipitation

rate for cat 3–5 hurricanes, which has a negligible corre-

lation, all of the other metrics have a substantial correla-

tion with the basinwide SST changes, ranging from 0.64 to

0.9. This finding highlights the importance of reliable

projections of the interbasin variations or patterns of fu-

ture SST change from climate models, in addition to the

overall tropical mean magnitude of the warming, for fu-

ture tropical cyclone changes (see also Sugi et al. 2009).

Future research will continue to address the issue of ro-

bustness of projections to the use of different downscaling

frameworks such as Emanuel (2013). Nonetheless, our

results suggest that narrowing uncertainties of the large-

scale climate change inputs to the downscaling frame-

works (e.g., SST change patterns) is an important research

task for reducing uncertainty in future tropical cyclone

projections worldwide.
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