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ABSTRACT

Twenty-first-century projections of Atlantic climate change are downscaled to explore the robustness of

potential changes in hurricane activity. Multimodel ensembles using the phase 3 of the Coupled Model In-

tercomparison Project (CMIP3)/Special Report on Emissions Scenarios A1B (SRES A1B; late-twenty-first

century) and phase 5 of the Coupled Model Intercomparison Project (CMIP5)/representative concentration

pathway 4.5 (RCP4.5; early- and late-twenty-first century) scenarios are examined. Ten individual CMIP3

models are downscaled to assess the spread of results among the CMIP3 (but not the CMIP5) models.

Downscaling simulations are compared for 18-km grid regional and 50-km grid global models. Storm cases from

the regionalmodel are further downscaled into theGeophysical FluidDynamics Laboratory (GFDL) hurricane

model (9-km inner grid spacing, with ocean coupling) to simulate intense hurricanes at a finer resolution.

A significant reduction in tropical storm frequency is projected for the CMIP3 (227%), CMIP5-early

(220%) and CMIP5-late (223%) ensembles and for 5 of the 10 individual CMIP3 models. Lifetime maxi-

mum hurricane intensity increases significantly in the high-resolution experiments—by 4%–6% for CMIP3 and

CMIP5 ensembles. A significant increase (187%) in the frequency of very intense (categories 4 and 5) hurri-

canes (winds $ 59ms21) is projected using CMIP3, but smaller, only marginally significant increases are

projected (145% and139%) for the CMIP5-early and CMIP5-late scenarios. Hurricane rainfall rates increase

robustly for the CMIP3 and CMIP5 scenarios. For the late-twenty-first century, this increase amounts to120%

to130% in the model hurricane’s inner core, with a smaller increase (;10%) for averaging radii of 200km or

larger. The fractional increase in precipitation at large radii (200–400km) approximates that expected from

environmental water vapor content scaling, while increases for the inner core exceed this level.

1. Introduction

The influence of global warming, as projected for the

twenty-first century by current climate models (e.g.,

Solomon et al. 2007), on hurricane activity in the

Atlantic basin is an important research question. Climate

model projections from phase 3 of the Coupled Model

Intercomparison (CMIP3; Meehl et al. 2007) and phase 5

of the Coupled Model Intercomparison (CMIP5; Taylor

et al. 2012) suggest substantial (;1.58C) increases over the

century in sea surface temperatures (SSTs) in the basin,

while wind shear and other storm-influencing factors are

projected to changeaswell (e.g.,Vecchi andSoden2007a,b).

Therefore, a question arises as to the net impact of these

various environmental influences on hurricane activity.

A related issue that arises in attempts to use statistical

models to address this problem is the role of local tropical

Atlantic SST versus relative SST (i.e., tropicalAtlantic SST

relative to the tropical mean SST) in changing Atlantic

hurricane activity. Some statistical relationships linking

Atlantic hurricane activity and local tropical Atlantic SSTs

suggest that a substantial (;28C) warming of the tropical

Atlantic would lead to a large increase (1300%) in a

seasonally integrated tropical cyclone power dissipation

index (PDI; Emanuel 2005, 2007) (Emanuel 2007; Vecchi
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et al. 2008). Other statistical and dynamical models and

physical considerations (e.g., Latif et al. 2007; Vecchi and

Soden 2007a; Swanson 2008; Bender et al. 2010; Zhao

et al. 2010; Ramsay and Sobel 2011; Vecchi et al. 2008,

2011, 2013b; Villarini et al. 2011; Villarini and Vecchi

2012a; Camargo et al. 2013) suggest that the relative

Atlantic SST is a more robust statistical indicator of

Atlantic hurricane activity change for the types of climate

perturbations relevant for both interannual variability

and twenty-first-century climate change projections than

local Atlantic SST. These alternative models suggest

relatively much smaller (660%) changes in Atlantic

power dissipation over the coming century (Vecchi

et al. 2008; Villarini and Vecchi 2013).

Recently, Villarini and Vecchi (2013) provided an up-

dated statistical model projection based on the CMIP5

climatemodel projections. These new projections include

an increase in Atlantic PDI across all 17 CMIP5 models

and 3 representative concentration pathways (RCPs).

Since the number of North Atlantic tropical cyclones is

not projected to increase significantly in their analysis

(Villarini and Vecchi 2012b), they attribute the increased

PDI to an intensification of Atlantic tropical cyclones in

response to both greenhouse gas (GHG) increases and

aerosol changes over the coming decades, with a signifi-

cant enhancement by non-GHG (primarily aerosol)

forcing in the first half of the twenty-first century.

In previous papers (Knutson et al. 2007; Knutson et al.

2008; Bender et al. 2010), we have explored these issues

using dynamical downscaling approaches. The present

study is an extension of these studies, comparing pro-

jections using CMIP5 climatemodels to the earlier CMIP3

projections. We now include more analysis of the ro-

bustness of the CMIP3 projections (Knutson et al. 2008;

Bender et al. 2010) by downscaling 10 individual CMIP3

models to explore the spread of projections among the

individual models. For the CMIP5multimodel ensemble

projections, we consider both early-twenty-first-century

and late-twenty-first-century projections in light of the

findings of Villarini and Vecchi (2013). Individual

CMIP5 models have not been examined in our ex-

periments to date.

We use three different dynamical downscaling models

in different combinations to derive our tropical cyclone

projections. The first is a regional 18-km grid atmospheric

model (ZETAC; Knutson et al. 2007) nested within the

National Centers for Environmental Prediction (NCEP)

reanalyses (Kalnay et al. 1996). We explore climate

change scenarios with this model by perturbing the re-

analysis input with climate model–projected changes in

large-scale circulation, temperatures, moisture, and SSTs

for the late-twenty-first century (Knutson et al. 2008). In

the second approach, we examine changes in Atlantic

tropical storms and hurricanes (up to category 2) for the

same climate change scenarios but use a 50-km grid global

atmospheric model [High-resolution Atmospheric Model

(HiRAM); Zhao et al. 2009] for the downscaling. For the

third approach, we downscale all of the tropical storms

and hurricanes from our 18-km grid regional model, on

a case-by-case basis, into the Geophysical Fluid Dynamics

Laboratory (GFDL) coupled ocean–atmosphere hurri-

cane prediction system (Bender et al. 2010) in order to

simulate hurricanes with intensities up to category 4 and 5

intensity. This requires highermodel resolution than in the

ZETAC model to better resolve the storm’s inner core.

Through these modeling studies we can explore the

sensitivity of our projections to different sources of un-

certainty. For example, there is uncertainty in the large-

scale projected climate changes that are input to the

downscaling (CMIP3 versus CMIP5 multimodel ensem-

ble projections or the range of projections among indi-

vidual CMIP3 models illustrate this but probably do not

span the full range of uncertainty). There is also un-

certainty in the downscaling results for a given climate

change scenario based on the particular model or

method used for the downscaling (i.e., the ZETAC re-

gional model versus the HiRAM 50-km-grid global

model or the GFDL hurricane model versus statistical

downscaling). See Table 1 for complete list of models

and model expansions.

2. Model description

The models we use at various stages of our hurricane

downscaling are summarized in Table 2. These include

a regional atmospheric model for seasonal Atlantic

simulations; a hurricane prediction model for a further

downscaling of the individual storms in the regional at-

mospheric model; and several global climate models,

which provide projected late-twenty-first-century climate

change boundary conditions for our climate change per-

turbation runs. We also compare our tropical cyclone

downscaling results with those from a global atmospheric

model run for multiyear ‘‘time slices’’ of the present and

projected future climate. The various CMIP3 and CMIP5

climatemodels and scenarios used in our study (as well as

full expansions) are listed in Vecchi and Soden (2007b)

and Table 3, respectively, and will be described in more

detail later in this section. We assess the significance of

our downscaling results using statistical significance tests

for both individual model results and for experiments

with multimodel ensemble climate change perturbations.

These statistical tests assess the strength of the climate

change signal in storm behavior relative to the model-

derived internal variability (or weather noise) in our ex-

periments. However, this weather noise is just one aspect
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of the overall uncertainty: a key test of the robustness is

the comparison of results between CMIP3 and CMIP5

multimodel ensembles or between different individual

CMIP3 models. These comparisons assess the robust-

ness of our results to the use of different climate models,

which is probably a much greater source of uncertainty

in the projections than the weather noise uncertainty for

a single given model. The different downscaling ap-

proaches provide another means of assessing robustness

of the projections.

a. ZETAC regional Atlantic basin model

For our present climate (control) condition, we sim-

ulate 27 seasons (1980–2006; August–October season)

of Atlantic hurricane activity using an 18-km-grid re-

gional atmospheric model designed specifically to sim-

ulate Atlantic hurricane seasonal activity (Knutson

et al. 2007). This nonhydrostatic model is run without a

subgrid-scale moist convection parameterization (CP), as

discussed below and in Knutson et al. (2007). The model

TABLE 1. All CMIP models and model expansions used in this paper.

Model name Model expansion

CanESM2 Second Generation Canadian Earth System Model

CCSM3 Community Climate System Model, version 3

CCSM4 Community Climate System Model, version 4

CNRM-CM5 Centre National de Recherches M�et�eorologiques Coupled Global Climate Model, version 5

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Organisation Mark, version 3.6.0

FGOALS-g2 Flexible Global Ocean–Atmosphere–Land System Model gridpoint, second spectral version

GFDL-CM2.0 Geophysical Fluid Dynamics Laboratory Climate Model, version 2.0

GFDL-CM2.1 Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1

GFDL-CM3 Geophysical Fluid Dynamics Laboratory Climate Model, version 3

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory Earth System Model with Generalized Ocean Layer Dynamics

(GOLD) component (ESM2G)

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory Earth System Model with Modular Ocean Model 4 (MOM4)

component (ESM2M)

HadCM3 Hadley Centre Coupled Model, version 3

HadGEM1 Hadley Centre Global Environment Model, version 1

HadGEM2-CC Hadley Centre Global Environment Model, version 2 - Carbon Cycle

HadGEM2-ES Hadley Centre Global Environment Model, version 2 - Earth System

INGV Istituto Nazionale di Geofisica e Vulcanologia

IPSL-CM5A-LR L’Institut Pierre-Simon Laplace Coupled Model, version 5, coupled with NEMO, low resolution

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace Coupled Model, version 5, coupled with NEMO, mid resolution

MIROC (hires) Model for Interdisciplinary Research on Climate, version 3.2 (high resolution)

MIROC (medres) Model for Interdisciplinary Research on Climate, version 3.2 (medium resolution)

MIROC5 Model for Interdisciplinary Research on Climate, version 5

MIROC-ESM Model for Interdisciplinary Research on Climate, Earth System Model

MIROC-ESM-CHEM Model for Interdisciplinary Research on Climate, Earth System Model, Chemistry Coupled

MPI-ESM-LR Max Planck Institute Earth System Model, low resolution

MRI-CGCM3 Meteorological Research Institute Coupled Atmosphere–Ocean General Circulation Model, version 3

NorESM1-M Norwegian Earth System Model, version 1 (intermediate resolution)

TABLE 2. Summary of the experiments and models used for both the control (present-day) and twenty-first-century experiments.

Model/scenario:

CMIP3 CMIP5

Climate change scenario Climate change scenario

Regional climate model

(ZETAC); 18-km grid

18-member ensemble-mean climate change for

SRES A1B, late-twenty-first century (27 season

samples)

18-member ensemble-mean climate change

for RCP4.5, early and late-twenty-first-century

samples; (27 season samples)

Ten individual CMIP3 models (13-season samples)

Storm-following hurricane

model (GFDL and GFDN

versions); 9-km inner grid

All tropical cyclone cases from the above

ZETAC runs

All tropical cyclone cases from the above

ZETAC runs

GCM: HiRAM (50-km grid) 18-member ensemble-mean climate change for

A1B, late-twenty-first century (10 repeating

seasonal cycles)

13-member ensemble mean for RCP4.5 late-

twenty-first century (10 repeating seasonal

cycles)

7 individual CMIP3 models are in common with

the CMIP3 models used with the ZETAC model

1 SEPTEMBER 2013 KNUTSON ET AL . 6593



is forced at the lower boundary by observed SSTs and at

the horizontal boundaries by NCEP reanalyses, as de-

scribed in Knutson et al. (2007, 2008). This model uses

interior spectral nudging (on domain zonal and meridi-

onal wavenumbers 0–2, with a nudging time scale of

12 h) to maintain the model’s large-scale time-evolving

solution close to the NCEP reanalysis throughout the

atmosphere. The same nudging time scale is used for all

seasons and experiments (control and global warming

cases).

Our philosophy in using interior spectral nudging on

large spatial scales only, while not using CP at all, is

aimed at maintaining a realistic broad-scale thermody-

namic state in the model while allowing resolved con-

vection and condensation in themodel to do the work on

smaller scales to produce storm genesis. In our view, CP

can potentially harm the genesis process. [There are

some indications of this in previous studies, such as Han

and Pan (2006), Gentry and Lackmann (2006), andZhao

et al. (2012).] Also many aspects of CP remain uncertain,

so that our attempt aims at allowing only model-resolved

convective–condensation processes to produce the storm

genesis deemed appropriate. Further, the realistic

interannual variability obtained with the nudged model

is encouraging, particularly since we believe it is im-

portant for a model to simulate the relative occurrence

of both active and inactive years reasonably well in the

control simulation to form an appropriate starting point

for a climate change experiment. Global models use CP

in part to maintain a realistic mean profile, but at least in

the regional model context we can utilize this alternative

nudging approach. Because of computational constraints,

we have not explored the sensitivity of ourZETACmodel

global warming results to the nudging. We are aware

(Zhao et al. 2012) that tropical cyclone (TC) simulations

in models are sensitive to details such as CP and di-

vergence damping.

For the climate change perturbation runs, the NCEP

reanalysis (i.e., the nudging target) is modified by a sea-

sonally varying climatological change field that includes

the projected changes in SST, atmospheric temperature,

moisture, and winds from either the CMIP3 or CMIP5

climate models. A discussion of the methods for com-

puting global climate model (GCM) anomalies is given

in section 2d. The atmospheric trace gas (e.g., CO2 and

O3) and aerosol concentrations are not perturbed in the

ZETAC regional model experiments. However, the in-

fluence of these forcings is implicitly incorporated into

TABLE 3. Summary of the 18 CMIP5 (Taylor et al. 2012) GCMs used in this study with full model expansions to create the multimodel

anomalies. The last two columns indicate themodels for which the required data to create boundary conditions for ZETAC (SST, SLP, air

temperature, relative humidity, and winds; total 18 models) and HiRAM (SST and sea ice concentration; total 13 models) were available.

Modeling center (or group) Model name

Used in

ZETAC

Used in

HiRAM

Canadian Centre for Climate Modeling and Analysis CanESM2 Y Y

National Center for Atmospheric Research CCSM4 Y —

Centre National de Recherches Meteorologiques/Centre Europeen

de Recherche et Formation Avancees en Calcul Scientifique

CNRM-CM5 Y Y

Commonwealth Scientific and Industrial Research Organization

in collaboration with Queensland Climate Change Centre of Excellence

CSIRO-Mk3.6.0 Y Y

Chinese Academy of Sciences, Institute of Atmospheric Physics FGOALS-g2 Y Y

NOAA Geophysical Fluid Dynamics Laboratory GFDL-CM3 Y Y

NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2G Y Y

NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2M Y Y

Met Office Hadley Centre HadGEM2-CC Y —

Met Office Hadley Centre HadGEM2-ES Y Y

L’Institut Pierre-Simon Laplace IPSL-CM5A-LR Y —

L’Institut Pierre-Simon Laplace IPSL-CM5A-MR Y —

Atmosphere and Ocean Research Institute (The University of Tokyo),

National Institute for Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology

MIROC5 Y Y

Japan Agency for Marine-Earth Science and Technology, Atmosphere

and Ocean Research Institute (The University of Tokyo), and

National Institute for Environmental Studies

MIROC-ESM Y Y

Japan Agency for Marine-Earth Science and Technology, Atmosphere

and Ocean Research Institute (The University of Tokyo), and National

Institute for Environmental Studies

MIROC-ESM-CHEM Y —

Max Planck Institute for Meteorology MPI-ESM-LR Y Y

Meteorological Research Institute MRI-CGCM3 Y Y

Norwegian Climate Centre NorESM1-M Y Y
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the model through the three-dimensional climate change

field, which is used as boundary conditions and as a nudg-

ing target for the interior of the atmospheric domain.

Themethodology for identifying tropical storms in the

ZETAC simulations is described in Knutson et al.

(2007). Our previous analyses (e.g., Fig. 1 in Knutson

et al. (2008)) have indicated that the ZETAC model

reproduces the observed interannual variability of At-

lantic hurricane counts over 1980–2006 quite success-

fully, with a correlation coefficient of 0.84 for modeled

versus observed time series, although the linear trend

was about 40% larger than the observed trend. Since our

previous study was completed, we have subsequently

extended these simulation experiments through 2008.

The additional 2 years substantially overpredict Atlantic

hurricane counts (which leads to a linear trend that is

about a factor of 2 larger than observed, and the corre-

lation is reduced to 0.69). We speculate that the less

realistic trend in these simulations with the inclusion of

the most recent years is derived from large (and pre-

sumed spurious) negative trends in NCEP reanalysis

temperatures, from the upper troposphere to about

100 hPa (Vecchi et al. 2013a). Owing to our concerns

about the trend component, it is useful to examine other

aspects of the interannual variability. For example, if we

remove the linear trend from both modeled and ob-

served hurricane counts, the correlation between the

two detrended time series is 0.63 for 1980–2008 or 0.81

for the shorter time period (1980–2006). This indicates

that the model simulates the nontrend component of

variability fairly well, although with poorer agreement

for the latest years of 2007 and 2008. Further details on

the ZETAC model runs and their use in these experi-

ments are provided in Knutson et al. (2007, 2008).

For the climate change runs, the same interannual

variability is present as for the control run, since we add

an August–October mean climate change perturbation,

which does not change from year to year, onto the

NCEP reanalyses that are used as the nudging target and

boundary conditions. This procedure keeps unchanged

the large-scale interannual-to-multidecadal variations in

the interior as well as the high-frequency weather vari-

ability imposed at the model boundaries. The method

avoids some difficulties in the direct use of climate

model simulations, which have known biases (e.g., typ-

ically a failure to produce intense hurricanes or realistic

hurricane eyewall structure due to their coarse resolu-

tion) that can distort tropical storm simulations. It further

assumes that the atmospheric variability on the large

(interior) scales and in the boundary conditions of our

control simulation is also representative of variability

conditions under the global warming scenario. For exam-

ple, the occurrence frequency and amplitude of individual

El Ni~no–Southern Oscillation (ENSO) events are un-

changed from the observed data (1980–2006) in our

climate change runs.

b. GFDL hurricane model

Two versions of the GFDL hurricane model are used

to resimulate at higher resolution the individual storm

cases in this study. These model versions are the same as

those used in Bender et al. (2010) and include the ver-

sion used operationally from 2006 through 2012 at

the U.S. National Weather Service (NWS; termed the

GFDL hurricane model) and the version that has been

used by the U.S. Navy, upgraded in 2008 (termed the

GFDN hurricane model). In terms of specific differ-

ences between the two model versions, the GFDN ver-

sion allows shortwave radiation penetration into the

ocean, has a reduced enthalpy exchange coefficient that

is in better agreement with observations, includes a mi-

nor bug fix in the coupler interpolator, and has a minor

change in the randomized component of the CP scheme.

These changes were not implemented in the NWS ver-

sion since that model was operationally frozen for sev-

eral years.

The hurricane model is a triply nested moveable

mesh regional atmospheric model coupled to the three-

dimensional Princeton Ocean Model (Bender et al. 2007).

The 58 latitude by 58 longitude inner nest of the atmo-

spheric model has a horizontal grid spacing of about

9 km and is automatically relocated to follow themoving

tropical cyclone of interest. The ocean coupling provides

an important physical process for the simulations, as it

allows the tropical cyclone to interact with the ocean and

generate a cold wake in the SSTs, which can in turn af-

fect the cyclone’s intensity. We used the 18-model av-

erage three-dimensional ocean structure change from

the CMIP3 models to represent the change in ocean

temperature stratification in the warmer climate for all of

the hurricane model climate change experiments. Pre-

liminary sensitivity experiments (not shown) indicated

that the hurricane model results are relatively insensitive

to the details of projected changes in the ocean sub-

surface temperature profile (see alsoKnutson et al. 2001).

Each individual tropical storm and hurricane case

from the ZETAC regional model was downscaled using

the two versions of the hurricane model discussed

above.We first identified the time of maximum intensity

of the storm in the ZETAC model and then backed up

3 days from that point to begin the 5-day hurricane model

integration. This approach tends to preclude looking at

integrated storm statistics (such as PDI) in the hurricane

model, since only part of the storm lifetime is simulated.

Similarly, landfalling statistics are also not well cap-

tured. We plan to conduct longer (15 day) integrations
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of the hurricane model in future studies, if possible, to

address some of these issues.

c. HiRAM C180 global model

To explore the dependence of the tropical storm and

hurricane frequency change projections on the model

used for downscaling, we compare the ZETAC 18-km

grid regional model projections to those from a 50-km

grid global atmospheric model. The global model

(termedHiRAMC180) is described in Zhao et al. (2009)

along with the method of identifying tropical storms in

the model simulations. As shown in Zhao et al. (2009),

the model realistically simulates the interannual vari-

ability of Atlantic hurricane frequency when forced by

observed SSTs alone. Other aspects of the simulations

from this atmospheric model, such as the simulated

mean climate, are described in I. Held et al. (2013, un-

published manuscript). Here, the control run is based on

10 repeating seasonal cycles using the observed clima-

tology of SST and sea ice. The climate warming exper-

iments with the model again include 10 repeating

seasonal cycles, but use the observed climatology mod-

ified by changes to SST and sea ice concentration fields.

For the CMIP3 experiments, the changes are based on

linear trends (2001–2100) from an ensemble of GCMs

(Meehl et al. 2007) scaled to an 80-yr equivalent change

(see section 2d). The forcing change consists of an

increase in CO2 to 720 ppm, with no changes to other

climate forcing agents such as aerosols. In the warm-

climate runs, the nonnegligible effect of an increase in

CO2 in isolation, with prescribed SSTs (roughly a 20%

reduction in both Atlantic tropical cyclones and hurri-

canes), is described in Held and Zhao (2011).

A second multimodel ensemble forcing experiment

was performed using the CMIP5models. For the CMIP5

runs with the HiRAM model, all greenhouse gases are

modified according to the 4.5Wm22 RCP4.5 scenario.

Since both the CMIP3 and CMIP5 sets of model experi-

ments are based on 10-yr samples (control and late-

twenty-first century) using a repeating season cycle, the

runs do not include interannual variations such as ENSO.

This procedure differs from the procedure used for the

ZETAC regionalmodel climate change runs (section 2a).

d. Global climate model projections

We use large-scale climate-change projections from

global climate models as boundary conditions in these

downscaling studies. For the HiRAMC180 global model

experiments, we use only the change in SST and sea ice

concentrations from the global climatemodels (which are

computed separately for each month of the seasonal cy-

cle), as well as an increase in CO2 (CMIP3 runs) or all

greenhouse gases (CMIP5 runs). For theZETAC regional

model late-twenty-first-century experiments, we use

changes in SST, sea level pressure (SLP), air temperature,

relative humidity, and wind velocity tomodify the NCEP

reanalysis fields that are used as boundary forcing and as

the nudging target for the interior spectral nudging pro-

cedure (section 2a).

For our CMIP3-based experiments with both ZETAC

and HiRAM-C180, we use either an ensemble average

of 18 different CMIP3 models or individual CMIP3

models. For this study, we tested 10 of the 18 individual

models. For the 10 individual CMIP3 models, we per-

formed theZETACmodel downscaling for only the 13odd

years (1981–2005) in order to save computing resources.

The 10 selected individual CMIP3 models were cho-

sen from among the 12 highest-ranking models according

to a multivariate performance index for twentieth-

century historical forcing runs (Reichler and Kim 2008).

Because of issues with the archived humidity data that

are required for our experiments, 2 of the 12 highest-

ranking models were not included in our set. We did not

attempt to test all 18 models for this study because of

computational and time limitations. The 10 individual

CMIP3 models are shown in Fig. 1. The 18 models com-

prising themultimodel ensemble are listed in Vecchi and

Soden (2007a). For the 18-model ensemble, we used the

August–October time average of the years 2081–2100

minus the August–October time average for 2001–20

[Special Report onEmissions ScenariosA1B (SRESA1B)

scenario] as the time-invariant three-dimensional climate

change perturbation. When using individual models, we

first computed the linear trend through the model fields

for 2001–2100, project the model data onto these linear

trends, and then compute the difference 2081–2100minus

2001–20 of the linear trend projection of the fields as the

climate change perturbation. This procedure helps to re-

duce the contamination of themodel climate change signal

by the models’ internal variability (Knutson et al. 2008).

For our CMIP5 experiments, we use data from a sec-

ond 18-model ensemble based on the RCP4.5 scenario

(Table 3). Because of differing data requirements for

ZETAC andHiRAMand because of limited availability

of sea ice concentration data, we were limited to ex-

ploring a 13-model ensemble average with HiRAM,

while with ZETAC we were able to explore the full 18-

model ensemble average. For the CMIP5 models, anom-

alies were computed as the difference between either the

period 2016–35 or 2081–2100 of the RCP4.5 scenario and

the baseline years of 1986–2005 from the historical climate

simulations (which is an earlier baseline period, and hence

a longer period between averaging periods, than we

used for CMIP3). The global surface temperature dif-

ference for our climate change perturbation is quite

similar for our CMIP3 and CMIP5 runs (1.698 versus
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FIG. 1.Means (circles, triangles, or boxes) and ranges (vertical lines) across all simulated

years of storm counts for eachmodel experiment. Filled circles and open triangles indicate

where the change between the present-day (control) run and warm-climate storm fre-

quency is statistically significant (p , 0.05), according to a two-sample one-sided t test

(filled circle) or a one-sidedMann–Whitney–Wilcoxonmedian test (triangles). The sign of

the one-sided test used is indicated by the direction of the triangles. The words ‘‘Odd

Years’’ at the top of the panels refer to the 13 (August–October) seasons simulated for the

individual CMIP3 models. The words ‘‘All Years’’ refer to the 27 (August–October)

seasons simulated for the 18-model ensembleCMIP3 andCMIP5 climate changes. Results

were obtained by (left) downscaling using the ZETAC regional model or (right) using the

ZETAC model followed by a second downscaling step applied to each storm case using

theGFDLhurricanemodel. Results are shown for up to five classes of storm intensity: (a),

(d) tropical storms and hurricanes; (b),(e) hurricanes; (c),(f) major hurricanes, category

3–5 (for major hurricanes, boxes are used instead of triangles, as two-sided tests were

performed for these cases); (g) category 4–5 hurricanes; and (h) strong category 41
hurricanes with maximum winds exceeding 65ms21. The GFDL model results in (d)–(h)

are based on a two-member ensemble for each case using two versions of the GFDL

hurricane model (GFDL and GFDN). Major hurricanes from the ZETAC model are

diagnosed in (c) using central pressure rather than maximum winds.
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TABLE 4. Storm statistics from CMIP5- vs CMIP3-based downscaling experiments for Atlantic tropical storms and hurricanes, based on

comparing 27August–October seasons (1980–2006) with andwithout a climate change perturbation. CMIP3 andCMIP5 refer to storm climate

changes simulated using climate change information from the CMIP3–A1B and CMIP5–RCP4.5 multimodel ensembles. CMIP5-early and

CMIP5-late perturbations are for years 2016–35 and 2081–2100, respectively, compared to the historical simulations (years 1986–2005). Control

refers to our present-daydownscaling simulations (1980–2006). The hurricanemodel results are for the averageof runs using twomodel versions

(GFDL and GFDN). Hur refers to hurricane; Ts refers to tropical storms and hurricanes combined. Frequencies are in number per year

(August–October only). Cat is Saffir–Simpson intensity category (1–5) with cat 0 signifying less than hurricane strength. Trans speed is storm

translation speed in ms21. Rain rate is the average rain rate within 100km of the storm center in mmday21. PDI is in units of 109m3 s22.

Hur_ws.65 refers to hurricanes with surface wind speeds$ 65ms21. Maxwnd_ts andmaxwnd_hur aremean lifetimemaximum intensities for

all tropical storms (wind speed . 17.5ms21) or hurricanes (wind speed . 33ms21). For the statistical adjustment method, there were no

category 5 hurricanes in the control or for either of the CMIP5 ensembles; there were five category 5 hurricanes in the CMIP3–A1B ensemble

results (0.185 storms per year). The p levels in parentheses are the estimated probabilities of incorrectly rejecting the null hypothesis of no

change in the metric, based on one-sidedMann–Whitney–Wilcoxon tests. Two-sided tests were used for translation speed, Hur (3–5), and Hur

(Cat 3) statistics. One-sided tests were used for other metrics; these p values can be converted to two-sided results bymultiplying the p value by

2. Bold highlights changes that are significant at the 0.05 level.

ZETAC regional model

Means % change (p level)

Variable Obs Control CMIP3 CMIP5-early CMIP5-late

Ts (0–5) frequency 9.00 11.26 227.3 (,0.01) 220.4 (0.02) 222.7 (0.02)

Hur (1–5) frequency 5.30 6.19 217.4 (0.15) 25.4 (0.36) 218.6 (0.08)

PDI 235.33 179.12 221.1 (0.04) 221.0 (0.05) 223.3 (0.03)

Maxwnd_ts 39.44 34.13 3.5 (0.05) 2.4 (0.07) 2.9 (0.04)

Maxwnd_hur 49.57 38.76 2.0 (0.05) 20.7 (0.14) 2.2 (0.04)

Landfall_ts 2.37 2.19 216.9 (0.27) 18.6 (0.10) 3.4 (0.46)

Landfall_hur 1.04 0.96 223.1 (0.38) 3.8 (0.36) 211.5 (0.40)

Trans speed 6.64 6.38 2.1 (0.27) 24.7 (0.03) 21.9 (0.26)

Rain rate_ts — 185.99 18.8 (,0.01) 7.8 (0.04) 13.4 (,0.01)

Rain rate_hur — 278.15 16.7 (,0.01) 3.1 (0.34) 9.0 (0.02)
Ts (cat 0) 3.70 5.1 239.4 (,0.01) 238.7 (,0.01) 227.7 (0.02)

Hur (cat 1) 1.89 5.41 225.3 (0.05) 22.7 (0.46) 223.3 (0.05)

Hur (cat 2) 1.04 0.78 38.1 (0.11) 223.8 (0.49) 14.3 (0.15)

Hurricane model downscale

Means % change (p level)

Variable Obs Control CMIP3 CMIP5-early CMIP5-late

Ts (0–5) frequency 9.00 10.85 227.0 (,0.01) 222.0 (,0.01) 224.2 (,0.01)

Hur (1–5) frequency 5.30 8.02 231.9 (,0.01) 223.1 (,0.01) 228.2 (,0.01)

Hur (3–5) 2.37 2.70 217.1 (0.17) 26.8 (0.63) 215.8 (0.25)

Hur (4–5) 1.37 0.57 87.1 (0.01) 45.2 (0.06) 38.7 (0.11)

Hur_ws.65 0.52 0.11 250.0 (0.05) 83.3 (0.25) 83.3 (0.17)

PDI 235.33 183.05 217.2 (0.04) 212.3 (0.09) 220.1 (0.02)

Maxwnd_ts 39.44 41.12 0.7 (0.20) 3.4 (0.04) 1.7 (0.18)

Maxwnd_hur 49.57 46.09 6.1 (,0.01) 4.5 (,0.01) 4.0 (0.02)

Trans speed 6.64 5.57 6.0 (0.22) 23.0 (0.23) 22.0 (0.31)

Rain rate_ts — 160.88 22.1 (,0.01) 18.2 (,0.01) 19.2 (,0.01)
Rain rate_hur — 226.17 22.1 (,0.01) 11.4 (,0.01) 21.6 (,0.01)

Ts (cat 0) 3.70 2.83 213.1 (0.10) 219.0 (0.04) 213.1 (0.07)

Hur (cat 1) 1.89 3.41 251.6 (,0.01) 241.3 (,0.01) 243.5 (,0.01)

Hur (cat 2) 1.04 1.91 217.5 (0.17) 213.6 (0.23) 218.4 (0.10)

Hur (cat 3) 1.00 2.13 245.2 (,0.01) 220.9 (0.10) 230.4 (0.01)

Hur (cat 4) 1.00 0.56 83.3 (0.01) 46.7 (0.05) 30.0 (0.21)

Hur (cat 5) 0.37 0.02 200.0 (0.37) 0.0 (—) 300.0 (0.31)

Statistical refinement

Means % change (p level)

Variable Obs Control CMIP3 CMIP5-early CMIP5-late

Ts (0–5) frequency 9.00 11.26 227.3 (,0.01) 220.4 (0.02) 222.7 (0.02)

Hur (1–5) frequency 5.3 7.41 224.0 (0.04) 214.5 (0.15) 219.0 (0.07)
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1.708C, respectively). Our modified approach for CMIP5

allows us to more readily explore projected changes from

present climate conditions to either the early-twenty-first

(2016–35) or late-twenty-first (2081–2100) century. This

approach was adopted since earlier work (Villarini and

Vecchi 2012b, 2013) suggested that the projected TC

changes may not evolve linearly over the twenty-first

century. We have not yet performed the downscaling

procedure on individual climate models from the CMIP5

archive because of computational and time limitations for

the present study.

3. Results

a. Storm frequency changes

1) CMIP3 DOWNSCALING EXPERIMENTS

The robustness of twenty-first-century model pro-

jections of tropical storm and hurricane frequency

changes from either the ZETAC 18-km grid regional

model (Figs. 1a–c) or the GFDL hurricane model

(Figs. 1d–h) is explored in Fig. 1. By comparing the

results for different models or the CMIP3 versus CMIP5

multimodel ensembles, and through statistical signifi-

cance testing of these results, the robustness of our

findings can be better assessed. Results are grouped by

intensity class of storm, with the weakest storms included

in the top panels of the figure (which show all storms of at

least tropical storm intensity or maximum surface winds

of at least 17ms21) and the most intense storms shown in

the bottom panel of the figure.

A striking feature of Fig. 1 is the preponderance of

negative changes in the occurrence (i.e., reduced fre-

quency) of weaker storms in the warmer climate, which

then shifts systematically to a preponderance of positive

changes (increased frequency) for the strongest storms

(e.g., category 4 and 5 stormswithwinds of at least 59ms21

or strong category 41 storms with winds exceeding

65ms21). This shift is much more apparent for the hur-

ricane model results (Figs. 1d–h) than for the ZETAC

regional model (Figs. 1a–c), which does not simulate

high-intensity (categories 4 and 5) storms.

Tables 4 and 5 summarize these projected changes for

the various classes of storms. Table 4 shows results for

the 18-model CMIP3 ensemble based on 27-yr samples,

whereas Table 5 focuses on results for individual CMIP3

models and examines only the 13 odd years in the sample.

While CMIP3 multimodel ensemble results for the 13

odd years are shown in Table 5 for completeness, the

multimodel ensemble results in Table 4 are emphasized

here since they include a larger sample (all 27 seasons or

years). For the CMIP3 18-model ensemble-mean climate

change projection, the ZETAC regional model simulates

a significant (p value , 0.01) 27% reduction in tropical

storm frequency (Table 4). The range across the 10 in-

dividualCMIP3modelswas262%to18%(Table 5),with

5 of the 10 individual models showing a significant (p ,
0.05) decrease. The average of the 10 individual models

(not shown) is a decrease of 30% or comparable to the

simulated decrease (233%) for the 13 odd years using the

18-model average climate change perturbation.

For hurricane frequency in the ZETACmodel, the 18-

model ensemble CMIP3 change is 217% (Table 4),

though not statistically significant (p5 0.15). The range

across the 10 individual CMIP3 models for hurricane

frequency (Table 5) is 266% to 122% with 3 of the 10

models showing a significant (p, 0.05) decrease. There

is little significant change (Fig. 1) in major hurricanes in

the ZETAC model (category 3–5 hurricanes, based on

a central pressure criterion of less than 965 hPa).

TABLE 4. (Continued)

Statistical refinement

Means % change (p level)

Variable Obs Control CMIP3 CMIP5-early CMIP5-late

Hur (3–5) 2.37 2.89 210.3 (0.36) 223.1 (0.15) 211.5 (0.38)

Hur (4–5) 1.37 0.78 42.9 (0.10) 219.0 (0.48) 14.3 (0.15)

Hur_ws.65 0.52 0.15 200.0 (0.07) 225.0 (0.59) 125.0 (0.22)

PDI 235.33 257.78 215.6 (0.09) 219.1 (0.09) 220.1 (0.07)

Maxwnd_ts 39.44 39.81 6.7 (0.05) 3.8 (0.08) 5.2 (0.05)

Maxwnd_hur 49.57 46.33 6.2 (0.02) 1.5 (0.46) 4.1 (0.06)

Landfall_ts 2.37 2.18 217.0 (0.27) 18.6 (0.10) 3.4 (0.46)

Landfall_hur 1.04 1.07 227.6 (0.26) 31.0 (0.12) 23.4 (0.40)

Ts (cat 0) 3.70 3.85 233.7 (,0.01) 231.7 (0.02) 229.8 (0.02)

Hur (cat 1) 1.89 2.96 237.5 (0.02) 220.0 (0.12) 227.5 (0.08)

Hur (cat 2) 1.04 1.56 223.8 (0.19) 11.9 (0.28) 216.7 (0.26)

Hur (cat 3) 1.00 2.11 229.8 (0.05) 224.6 (0.08) 221.1 (0.10)

Hur (cat 4) 1.00 0.78 19.0 (0.21) 219.0 (0.48) 14.3 (0.15)

Hur (cat 5) 0.37 0.00 (see caption) — —
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For the more intense classes of hurricanes, we focus on

dynamical downscaling results from theGFDL hurricane

model (ensemble of GFDL and GFDN model versions),

as shown in Figs. 1f–h. The hurricane models’ frequency

projections for major hurricanes (category 3–5) are

summarized as follows: no significant change (217%) for

the 18-model ensemble climate change (Table 4), with a

significant decrease (increase) for 4 (2) of the 10 in-

dividual CMIP3 models (Table 5). The average change

for the 10 individual CMIP3 models (213%, not shown)

is not significant, and the range across the individual

models is 288% to 171%.

For category 4 and 5 storms, a significant increase in

frequency (187%with a p value of 0.01) is simulated for

the warmer climate using the 18-model ensemble-mean

CMIP3 model climate change, as was shown in Bender

et al. (2010). For the 10 individual models (Table 5), the

range of category 4 and 5 frequency changes is 2100%

to1210%, with 3 of the 10 model downscalings showing

a significant (p , 0.05) increase.

Strong category 41 hurricanes with winds exceeding

65m s21 occur about once per decade in the control run

compared with about once every 2 years in the obser-

vations (Table 4). The frequency of these storms in-

creases significantly (1250%; p5 0.05) for the 18-model

ensemble-mean CMIP3 climate change. The change for

the average of the 10 individual CMIP3 models is190%

but not statistically significant (not shown). The 10 in-

dividual models (Table 5) show a range of changes of

2100% to 1480%, with 3 of the 10 individual models

showing a significant increase. The Atlantic basin PDI

shows a strong tendency for decreases in the ZETAC

model (Tables 4, 5), as expected based on the basinwide

changes in the various hurricane categories. While the

projected changes in U.S. landfalling tropical storm and

hurricane counts tend to be negative in the individual

CMIP3 model experiments, the decreases in the CMIP3

ensemble-mean climate change scenario were not statis-

tically significant.

As an alternative to the second dynamical downscal-

ing step using the hurricane model, we also applied a

statistical refinement for hurricane intensity directly to

the ZETAC regional model data (Zhao and Held 2010).

This statistical refinement is based on matching the

percentiles of the model’s control run distribution to the

observed wind speed distribution, which substantially

lowers the wind speed threshold used to identify higher-

category hurricanes in the model. The results using this

alternative approach (Table 4) show a similar overall

behavior to that from dynamical downscaling using the

GFDL hurricane model—at least for the frequency of

weak storms. However, a statistically less robust increase

in the frequency of stronger storms is projected using the

statistical refinement approach, compared to dynamical

downscaling (Table 4).

The downscaling projections for the frequency of At-

lantic tropical storms and hurricanes for the CMIP3 and

CMIP5 ensemble-mean climate change and individual

CMIP3 models can also be compared between the

ZETAC regional model and the GFDL HiRAM C180

global climate model (Fig. 2). The scatterplot compari-

son in Fig. 2 was done for the subset of CMIP3 models

that are common to the experiments donewith these two

downscaling models. The HiRAM C180 model (50-km

grid) uses prescribed SST changes from the CMIP

models. In contrast, the ZETAC model is additionally

forced by atmospheric temperature, wind, and moisture

changes; these are internally generated by theC180model.

The 18-model ensemble and 7 of the 10 individual models

were in common among the downscaling experiments

currently available using these two downscaling models.

For tropical storms in the C180 experiments, all seven

individual CMIP3 models and the 18-model ensemble

climate change show reduced frequency, compared to the

ZETAC experiments, where six of the seven individual

models and the 18-model ensemble show a decrease. The

correlation between the seven individual CMIP3 model

percent change results is 0.77. For hurricanes, five of the

seven individual CMIP3 models and the 18-model en-

semble yield a decrease in frequency using C180, while

four of the seven individual models plus the 18-model

ensemble show a decrease in frequency for ZETAC. If

we look for consistency of hurricane downscaling re-

sponse for individual CMIP3 models, only one of the

seven models shows an increase in hurricane frequency

in both the C180 and ZETAC downscaling experiments

(upper right quadrant) while three show a decrease in

both (lower left quadrant). Still, the correlation among

the individual model percent change values is 0.73 for

the hurricane changes.

2) CMIP5 VERSUS CMIP3 RESULTS

As a test of the robustness of our results to the use of

the new CMIP5 climate models, we have downscaled an

18-model ensemble climate change scenario obtained

from the CMIP5 models (early- and late-twenty-first-

century projections). We have not yet had the opportu-

nity to examine individual climate model downscalings

for the CMIP5 models. The ensemble results for storm

frequency are summarized and compared graphically in

Figs. 1 and 2 and summarized in tabular form in Table 4.

Figure 1 shows that the basic result from CMIP3 of a

significant decrease in the frequency of tropical storms

and hurricanes is robustly reproduced using the inde-

pendent CMIP5 climate change scenarios (early- and late-

twenty-first century). In terms of quantitative comparison
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FIG. 2. Comparison of percent changes in frequency of (a) tropical storms and hurricanes (category

0–5) and (b) hurricanes (categories 1–5) for the ZETAC regional model experiments vs the HiRAM

C180 global model projections (August–October season) for the late-twenty-first century. Results are

shown for the CMIP3–A1B and CMIP5–RCP4.5 multimodel ensembles and for seven common in-

dividual model experiments from CMIP3–A1B. The gold lines depict the least squares best fit line

through the seven scatterplot points for the seven common individual model experiments.
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(Table 4), the tropical storm frequency change from the

ZETAC regional model is 227% for CMIP3 compared

with223% forCMIP5-late (see also Fig. 2). The reduction

is almost as large for CMIP5-early (220%). For hurricane

(categories 1–5) frequency, the ZETAC regional model

shows nominal decreases of217% (p5 0.15) for CMIP3

and219% (p5 0.08) for CMIP5-late, indicatingmarginal

significance for the latter case. ForU.S. landfalling tropical

storms (hurricanes), the projected change is 217%

(223%) for CMIP3 and 13% (212%) for CMIP5-late,

but none of these changes are statistically significant. For

the PDI, the 18-model ensemble results show significant

decreases of 217% (p 5 0.04) for CMIP3 and 220%

(p5 0.03) for CMIP5-late, which may be relatively more

significant owing to the aggregated nature of the metric.

Concerning the frequency of the more intense hurri-

canes, we can compare the hurricanemodel downscaling

results for CMIP3 and CMIP5 scenarios in Table 4 and

Fig. 1. The frequency changes have a tendency to shift

from negative (for tropical storms) to positive (for very

intense hurricanes) for theCMIP3 andCMIP5-early and

CMIP5-late ensembles, although the statistical signifi-

cance of the positive changes for intense hurricanes for

CMIP5 is not as robust as for the CMIP3. For example,

for category 4 and 5 hurricanes the frequency increase

(187%) was significant (p5 0.01) for CMIP3, while for

CMIP5-early and CMIP5-late the changes were still

positive (145% and 139%) but not quite significant at

the 5% level (p5 0.06 and 0.11, respectively, according

to the Mann–Whitney–Wilcoxon test). Using a t test

(not shown in Table 4) results in a slightly more signif-

icant assessment of the changes (p 5 0.04 for CMIP3,

p5 0.05 for CMIP5-early, and p5 0.08 for CMIP5-late).

In summary, the projected increases in category 4 and 5

frequency are significant for the CMIP3–A1B scenario

but are only marginally significant for the CMIP5-early

climate change scenario and even less significant for the

CMIP5-late scenario.

For very intense hurricanes with winds of at least

65m s21, we find similar results to category 4 and 5, with

large (1250%) and significant (p 5 0.05) increases for

the CMIP3–A1B scenario but with only nominally posi-

tive changes in frequency for CMIP5 (183% for both

CMIP5-early and CMIP5-late; Table 4). Neither of the

CMIP5-based increases are statistically significant (p 5
0.25 and 0.17). U.S. landfalling statistics are not pre-

sented for the stronger systems, owing to the fact that

the higher (categories 4 and 5) storms are only simulated

explicitly with the GFDL hurricane model. Those runs,

which by design are limited to 5-day duration beginning

3 days prior to maximum intensity in the host (ZETAC)

model, are not well suited for the examination of U.S.

landfall frequency. In fact, landfall often did not occur

within the 5-day timeframe of the storm experiment

even in cases where a landfall eventually did occur in the

(host) ZETAC model. For these reasons, the U.S.

landfalling hurricane and tropical storm frequency

changes obtained using the hurricane model downscal-

ing framework (Table 4) should be treated with caution.

b. Storm intensity changes

1) CMIP3 INTENSITY RESULTS

The changes to hurricane characteristics with climate

warming can also be examined in terms of frequency his-

tograms of lifetime maximum wind speeds (one value per

storm) as shown in Figs. 3 and 4 and Tables 4 and 5 for the

CMIP3 downscaling. The ZETAC model histograms in

Fig. 3 show the clear deficiency of the ZETAC model

(present-day control simulation) at reproducing the obser-

ved intensity distribution (black dashed line), particularly

for higher intensities; the ZETAC model also simulates

too many moderate intensity storms. These shortcomings

have largely motivated our use of the GFDL hurricane

model for this study. The higher-resolution hurricane

model simulates a more realistic distribution of storm in-

tensities thanZETAC, particularly above 50ms21 (Fig. 4),

although it remains deficient at simulating the observed

frequency of the highest-intensity storms (Table 4).

There is considerable spread in the climate change

experiment results among the different individual

CMIP3models as shown in Figs. 3 and 4, yet it is possible

to see the common tendency of fewer storms overall

in the warm-climate runs than in the control runs for both

the ZETAC and GFDL hurricane models. While this

reduction holds at most intensities, the tendency reverses

to one of greater occurrence of storms at the high-

intensity end in the warmer climate—at least for most of

the individual models. This amounts to a change in the

shape of the normalized histogram, particularly evident

for the GFDL hurricane model (Fig. 4), such that the

normalized distribution becomes slightly flatter andmore

spread out. The consistency of the response of the higher-

intensity storms is easier to discern in Fig. 1, which fo-

cused on the frequency of particular categories of storms,

thus allowing for a particular focus on the higher-intensity

storms. Such intense storms are relatively rare in obser-

vations compared to the typical hurricanes and so they

tend to be deemphasized in intensity histograms that

depict the entire intensity distribution (e.g., Figs. 3, 4).

They nonetheless have important implications for hurri-

cane damage potential. For example, Pielke et al. (2008)

conclude that category 4 and 5 hurricanes were re-

sponsible for nearly half of the historical U.S. hurricane

damage, even though they account for only about 15% of

U.S. landfalling tropical cyclones.
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2) CMIP5 VERSUS CMIP3 INTENSITY RESULTS

The ensemble intensity distributions for CMIP3 and

CMIP5 from the GFDL hurricane model, shown in

Fig. 5, depict a flattening and spreading out of the in-

tensity distribution, along with an overall reduction in

frequency. That is, the high-intensity end of the intensity

distribution evolves differently from the middle of the

distribution, as is seen by the increase in frequency of

strong storms despite the reduction in the frequency of

storms in the middle of the distribution. This feature is

present for both CMIP3 and CMIP5 (early- and-late

twenty-first century), although it is less apparent for the

CMIP5 due to the smaller (only marginally significant)

change projected for the frequency of the strongest

hurricanes (Table 4).

An alternate way of assessing intensity changes is to

examine the average of the lifetime maximum inten-

sities for all storms above certain threshold intensities.

Table 4 shows that for the hurricane model, the average

maximum wind intensity for hurricanes (winds greater

than 33ms21) increases by about 4%–6% for the CMIP3

and CMIP5 (early- and late-twenty-first century) en-

sembles and that these changes are statistically signifi-

cant. Table 5 shows that the range among individual

CMIP3 models for this metric is 23% to 112%, with 9

of the 10models showing at least a nominal increase. For

all tropical storms and hurricanes combined, the model

ensemble changes are smaller (0.7% to 3.4%) and only

significant for CMIP5-early (Table 4). Nonetheless, the

mean change in hurricane intensity is very likely more

relevant for assessing hurricane damage potential. The

changes inmean lifetimemaximum intensity for tropical

storms or hurricanes in the ZETAC regional model are

generally smaller than for the hurricane model (20.7%

to 13.5%), but the ZETAC model has pronounced de-

ficiencies at simulating the intensity distribution and so is

considered less suitable for examining this metric, com-

pared to the hurricane model. To attempt to address the

low bias of the intensity simulation with the ZETAC

model, that model’s results can be statistically refined

(following Zhao and Held 2010) to explore the behavior

of higher-intensity storms, at least statistically. Figure 6

shows a scatterplot of hurricane intensity change results

obtained using statistical refinement versus that using

dynamical downscaling. Both approaches show a pre-

ponderance of positive changes; although as can been

seen in Table 4, the changes obtained using statistical

refinement for the multimodel ensemble-mean CMIP3

and CMIP5 climate change scenarios tend to be smaller

and/or less statistically significant than those from the

dynamical downscaling (hurricane model) approach.

FIG. 3. Frequency histograms for North Atlantic tropical storms: (left) unnormalized and (right) normalized where the sum of the plotted

histogram values equals 1 for each curve. (a),(c) Lifetime maximum surface wind speeds (ms21) and (b),(d) minimum surface pressures

(hPa) for observations (black dashed line), control run (thick black), CMIP3–A1B multimodel ensemble (CMIP3-ens18; thick red), and 10

CMIP3–A1B individual models (see legend). All results are for the ZETAC 18-km grid regional downscaling model (odd years only).
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For the individual CMIP3 models, the intensity changes

tend to be slightly larger for the statistical refinement ap-

proach, asmost of the individualmodel symbols in Fig. 6 lie

above the diagonal line.

In summary, for the CMIP3 and CMIP5 ensemble-

mean climate changes, the projected changes of mean

intensities have a clear positive tendency, especially for

hurricanes in the higher-resolution model downscaling

FIG. 4. As in Fig. 3, but for lifetime maximum surface wind speeds from the GFDL hurricane model

downscaling experiments (ensemble of GFDL and GFDN versions): (top) unnormalized and (bottom)

normalized histograms.Results shown for observations (black dashed line), control run (thick black line),

CMIP3–A1B 18-model ensemble (CMIP3-ens18; thick red), and the 10 CMIP3–A1B individual models

(see legend).
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experiments. The results for the individual models

(Table 5) have a clear tendency for increases but also

have a much wider range among the experiments. For

the high-resolution (hurricane model) runs, only one

individual model (HadGEM1) shows a negative change

of hurricane intensity; none of the models show a nom-

inally negative change for the ZETAC runs. Considering

all tropical cyclones (Maxwnd_ts), rather than just hur-

ricanes, several individualmodels shownegative intensity

changes in the high-resolution runs, and two individual

models do so in the ZETAC experiments.

c. Storm-track and occurrence changes

We present here a brief analysis of changes in the

geographical distribution of storm tracks. We focus on

the category 4 and 5 results for the CMIP3 and CMIP5

ensemble climate change experiments using the GFDL

hurricane model. Tracks for the GFDL hurricane model

for category 4 and 5 storms obtained from the GFDL/

NWS version are shown in the left column of Fig. 7,

while those for the GFDN version are shown in the

right column; results are compared from the CMIP3 and

CMIP5 (early- and late-twenty-first century) ensemble

runs. As noted earlier (Table 4), the increase in frequency

of category 4 and 5 storms is statistically significant

(p5 0.01) for the CMIP3 ensemble but only marginally

significant for the CMIP5 ensembles, especially for the

late-twenty-first-century CMIP5. Nonetheless, it is of

interest to compare the track maps for the category 4

and 5 storms for the various scenarios. The comparison

of the geographical distribution of storm occurrence is

examined in Fig. 8. The occurrence of category 4 and 5

storms shows more of a tendency for a shift toward the

Gulf ofMexico and Florida region for the CMIP5 climate

change runs than for the CMIP3 climate change runs. In

the CMIP3 runs, the increase of category 4 and 5 storms

was more focused over the western Atlantic (i.e., cen-

tered farther from a number of U.S. landfalling regions).

In any case, these differences in regional detail between

the CMIP3- and CMIP5-based intense hurricane track

projections should be viewed with a caution against

overinterpretation of such regional-scale details, despite

the strong interest regarding the climate impacts at these

scales. For example, we have not yet demonstrated that

our model is capable of providing useful climate vari-

ability or change information, based on past storm data,

at these smaller spatial scales (in contrast to the basin-

wide statistics). In addition, our hurricane model experi-

ments are amaximumof 5-day duration and are of limited

utility for examining U.S. landfalling storm behavior.

FIG. 5. As in Fig. 4, but for GFDLhurricanemodel downscaling experiments based on the CMIP3–A1B andCMIP5–RCP4.5 ensemble-

mean climate changes with (left) unnormalized and (right) normalized histograms. The ensemble of the GFDL and GFDN hurricane

model versions are shown, using all 27 years (1980–2006) for the control and perturbed climate samples. Results are shown for the control

run (black), CMIP3–A1B 18-model ensemble (CMIP3-ens18; red), CMIP5–RCP4.5 early-twenty-first-century ensemble (CMIP5_early;

green), and CMIP5–RCP4.5 late-twenty-first-century ensemble (CMIP5-late; blue).
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We are planning to address this limitation in future

studies.

The reduction in tropical storm frequency coupled

with a tendency for an increase of intense storm occur-

rence (Figs. 7, 8; Table 4) can be further explored in

terms of large-scale environmental changes simulated

by the CMIP3 and CMIP5 models for the SRES A1B

(CMIP3) and RCP4.5 (CMIP5) scenarios. Figure 9

shows maps of the projected changes in tropical cyclone

potential intensity (PI), vertical wind shear, SST, and

local SST relative to the tropical mean SST, as discussed

in Vecchi and Soden (2007a). Also shown for compari-

son are results from 23CO2 transient experiments

with the CMIP3 and CMIP5models (which are based on

linear trends from years 1–70 of 11% yr21 CO2 exper-

iments obtained from the CMIP3 and CMIP5 model

archives). Each of the CMIP3 and CMIP5 multimodel

twenty-first-century scenarios shows a band of minimum

(or even negative) PI change across the Atlantic basin.

While some areas of PI decrease are simulated, the PI

changes are predominantly positive over the basin’s

main tropical cyclone regions as a whole. The regions of

projected PI decrease are smaller and less pronounced

in the CMIP5–RCP4.5 runs than in the CMIP3 or 23CO2

runs. Similarly, the CMIP3–A1B and the 23CO2 runs

(for both CMIP3 and CMIP5) show large regions of

negative relative SST across the Atlantic, in contrast to

the CMIP5–RCP4.5 ensembles. These regions of nega-

tive relative SST correspond roughly to regions with

enhanced vertical wind shear. Since a decrease in trop-

ical storm frequency was found for the CMIP5–RCP4.5

as well as CMIP3–A1B downscaling, we speculate that

the change in the wind shear of the mean circulation is

not the primary driver of the decrease inAtlantic tropical

storm frequency seen across our experiments. Moreover,

the CO2-only experiments, which show the increased

shear and decreased relative SST for both CMIP3 and

CMIP5, indicate that the absence of these features in the

CMIP5–RCP4.5 ensemble is apparently related to changes

in nongreenhouse radiative forcing (RCP4.5 versus

SRES A1B) as opposed to changes in the models’ re-

sponses to increasing greenhouse gases (cf. the similarity

of CMIP5 and CMIP3 CO2-only responses). The pre-

ponderance of positive potential intensity changes of

a few meters per second in the CMIP3–A1B and

CMIP5–RCP4.5 scenarios is broadly consistent with the

simulated increase in lifetime maximum intensities of

hurricanes in our hurricane model downscaling and with

the increase in frequency of very intense (categories 4 and

5) hurricanes.

The CMIP3 and CMIP5 (early- and late-twenty-first

century)model projections generally indicate an amplified

FIG. 6. Scatterplot of projected changes (%) in the mean lifetime maximum intensities of all

hurricanes for the GFDL and GFDN hurricane model ensemble (horizontal axis) vs the sta-

tistically adjusted intensities from the ZETAC regional model (vertical axis). See legend for

identification of experiments.
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FIG. 7. Tracks and intensities of all storms reaching category 4 or 5 intensity ($59m s21) in the GFDL hurricane model downscaling

experiments (27 seasons), using model versions (left) GFDL or (right) GFDN. Results shown for the (a),(e) control climate; (b),(f)

CMIP3–A1B 18-model late-twenty-first-century ensemble climate change; (c),(g) CMIP5–RCP4.5 early-twenty-first-century ensemble;

and (d),(h) CMIP5–RCP4.5 late-twenty-first-century ensemble.
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warming response in the upper troposphere compared

to the surface [not shown, but see Knutson and Tuleya

(2004) or Hill and Lackmann (2011)]. For example, the

mean warming at 300 hPa is about 2.2 times larger than

near the surface for the main development region

(MDR; 108–208N, 808–208W) for both the CMIP3 and

the CMIP5 ensembles; for 9 of the 10 individual CMIP3

models, the warming ranges from about 1.9 to 2.7 times

larger than near the surface (with HadGEM1 being an

outlier with a factor of 3.5). These changes are thus

broadly similar to those reported in the previous studies.

The enhanced warming with height in the climate model

projections likely limits the hurricane intensity increase

in response to climate warming as simulated in the

hurricane model (e.g., Shen et al. 2000; Knutson and

Tuleya 2004; Emanuel et al. 2013; Vecchi et al. 2013a),

FIG. 8. Geographical distribution of the (left) projected rate of occurrence or (right) change in rate of occurrence of category 4 and 5

storms for (a) control; (b),(e) CMIP3–A1B late-twenty-first-century ensemble; (c),(f) CMIP5–RCP4.5 early-twenty-first-century en-

semble; and (d),(g) CMIP5–RCP4.5 late-twenty-first-century ensemble. The combined results obtained using the GFDL and GFDN

versions of the GFDL hurricane model (scaled as storm occurrences per decade in 108 3 108 grid boxes) are shown.
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compared to what it would be for a hypothetical uniform

warming with height, for example.

We have computed storm propagation speed statistics

from our storm samples (labeled trans speed in Tables 3

and 4). The results for the CMIP3 andCMIP5 ensembles

indicate no significant changes, and only 2 of the 10 in-

dividual CMIP3 model projections show a significant

change (increase). In short, there is not a clear consistent

signal in the storm propagation speed projections.

d. Storm-related precipitation rate changes

Arobust feature in ourmodel projections is an increase

of precipitation rates averaged within the near-storm

region. Figures 10a,b summarizes the statistical analysis

for the average precipitation rate within 100 km of the

storm center for all tropical storms and hurricanes

combined in the ZETAC (Fig. 10a) and hurricanemodel

(Fig. 10b) experiments, including results for the individual

CMIP3 model experiments. This metric includes the

entire storm lifetime (or up to 5 days in the case of the

hurricane model runs), which is dominated by the time

spent over the open ocean. Thus, the precipitation re-

sults shown here primarily represent hurricane-related

rainfall over the ocean, as opposed to landfalling or in-

land storms. For the ZETACmodel, the average change

for the CMIP3 18-model ensemble is 119%, while for

the CMIP5-early and CMIP5-late ensembles the aver-

age change is 18% and 113%, respectively (Table 4),

FIG. 9. Changes (warm climate 2 control; August–October season) in large-scale environmental fields from the (row one) original

CMIP3 and (rows two and three) CMIP5 climate model experiments and time periods (see text). (left) SST change (color shading) and

the relative SST change field computed as local SST change minus the tropical mean (308N–308S) SST change (K, contours with

hatching indicating where the SST warming , the tropical mean SST warming). (middle) Tropical cyclone PI change (m s21). (right)

Difference in vertical wind shear vector (200 hPa 2 850 hPa; m s21) magnitude between the warm climate and control. (bottom two

rows) CMIP3-23CO2 and CMIP5-23CO2 changes were computed from linear trends over years 1–70 of 11% yr21 CO2 experiments

using data from the CMIP3 and CMIP5model archives. Further details of computationmethods for SST, PI, and wind shear are given in

Vecchi and Soden (2007b).
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FIG. 10. As in Fig. 1, but for rain rate averaged within 100 km of the storm

center and averaged over all tropical storm and hurricane periods (mmday21)

for the (a) ZETAC regional model or the (b) GFDL–GFDN hurricane model

ensemble. (c) Scatterplot hurricane model vs ZETAC model of changes (%)

between the control and warm climate in hurricane (circles) or tropical storm/

hurricane (squares) rainfall rate averaged within 100 km of the storm center

for the CMIP3–A1B late-twenty-first-century ensemble (black) and individual

CMIP3 models. The dashed line illustrates a 1:1 relation between the results

from the two modeling frameworks.
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with all changes being statistically significant. In the

hurricane model (Fig. 10b; Table 4), the changes are even

larger, with an increase of 122% for the CMIP3 en-

semble,118% for CMIP5-early, and 119% for CMIP5-

late. For the 10 individual CMIP3 models that we have

examined, Table 5 shows that in the ZETACmodel runs,

all 10 runs have a positive change in this metric, ranging

from111% to128%, with 9 out of 10 having statistically

significant increases (p , 0.05) according to the Mann–

Whitney–Wilcoxon test. For the hurricane model down-

scaling runs, 7 of the 10 individualmodels have significant

increases in the 100-km-averaged precipitation rate.

Tables 4 and 5 show that the precipitation rate pro-

jections for hurricanes are similar to those for all tropical

storms and hurricanes combined; however, they are less

robust statistically, especially in the ZETACmodel runs.

For example, only 5 of the 10 individual models show

a significant increase in this metric for ZETAC, while 7

of the 10 have a significant increase in the hurricane

model runs. The changes for the CMIP5-early ensemble

are consistently much smaller than for the CMIP5-late

ensemble for the ZETAC model, but this distinction is

not as evident for the hurricane model runs. The results

hint that the precipitation rate changes (Fig. 10; Table 4)

are more closely tied to absolute temperature changes

than hurricane frequency changes are. The precipitation

rate results show a consistent positive tendency across

a number of model projections for both downscaling

models, whereas the hurricane frequency changes tend

to be negative for hurricanes up to category 3 but posi-

tive for categories 4 and 5. Previous studies that have

explored this metric have generally found that an in-

crease in tropical cyclone precipitation rates is a relatively

robust climate change response (see review in Knutson

et al. 2010).

Figure 10c shows a model-by-model scatterplot

comparison of precipitation rate change results for the

ZETAC versus hurricane model downscaling runs.

The comparison shows a relatively good agreement

between the two downscaling methods in their pro-

jections of changes in precipitation rate, although the

hurricane model tends to project a larger percentage

increase in future precipitation rate than does the (lower

resolution) ZETAC model.

Figure 11 shows the hurricane precipitation rate changes

for CMIP3 and CMIP5-late ensembles, for both the

ZETAC and hurricane models, as a function of averaging

the radius about the storm center, varying from 50 to

400km. For all sets of experiments, the percentage in-

crease is amplified nearer to the storm but then tends

to asymptote at roughly 110% at larger radii [;(200–

400) km]. We can use a simple moisture scaling argu-

ment to interpret the asymptotic behavior at larger radii.

If we assume that the moisture budget within the broad

FIG. 11. Change (%) between the control and warm climate in average hurricane rainfall rate

for various averaging radii about the storm center (km) for the CMIP3–A1B (black) and

CMIP5–RCP4.5 (red) late-twenty-first-centurymultimodel ensemble climate changes based on

the ZETAC regional model (thin solid lines) or the GFDL–GFDN hurricane model ensemble

(thick solid lines). The dashed lines illustrate idealizedwater vapor content scaling, obtained by

multiplying the average SST change in the region 108–258N, 208–808W by 7% 8C21.
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near-storm environment (within 400 km of the center) is

dominated by moisture convergence from the larger en-

vironment, then fractional increases in the atmospheric

moisture content in the warmer atmosphere should lead

to similar fractional increases in the moisture conver-

gence and thus in precipitation rate. A representative

SST change for our experiments (August–October mean,

averaged 10–258N, 20–808W) is 1.78C for CMIP3 and

1.38C for CMIP5-late. Assuming a 7% increase in lower-

tropospheric atmosphericwater vapor content per degree

Celsius SST change, we obtain the ;10% increases de-

picted by the dashed lines in Fig. 11 for the CMIP3 and

CMIP5 environments. Thus, our results show that this

scaling argument describes our model precipitation in-

creases fairly well for averaging radii of 200–400 km.

However, the more amplified model precipitation re-

sponse at smaller radii (between 50 and 150 km) does

not agree with this simple scaling. The amplification of

the fractional increase near the storm center is most

pronounced in the higher-resolution hurricanemodel runs,

where increases of the order of 20% and 33% occur at

averaging radii of 100 and 50km. For the ZETACmodel,

the increases are of the order of 15%(25%) for radii of 100

(50) km. These results suggest that other processes, such

as the intensification of the hurricane circulation, may

play a more important role in the response of the hurri-

cane inner-core precipitation rates to climate warming.

4. Discussion and conclusions

In this study, we have conducted a large number of

numerical experiments to explore the dependence of

Atlantic hurricane activity on projected climate changes

as obtained from the CMIP3 and CMIP5 coupled model

data archive.We have compared downscaling results for

CMIP3 against CMIP5-early and CMIP5-late twenty-

first-century projections and examined the spread of the

results within a 10-member subset of the 18 individual

models used to form the CMIP3 ensemble.

We have used two different downscaling models—an

18-km grid regional model (ZETAC) and a 50-km grid

global model (HiRAM C180)—and have simulated sub-

stantial sets (27) of 3-month seasons or years of hurricane

activity in order to examine the robustness of the initial

downscaling step. We focus especially on the simulated

frequency of tropical storms and hurricanes, as the in-

terannual variability of these metrics since 1980 is well

produced by thesemodels (e.g., Knutson et al. 2008; Zhao

et al. 2009). A caveat to the ZETACmodel results is that

the overall frequency of simulated tropical storms in the

model is sensitive to the nudging time scale used, as shown

in Knutson et al. (2007). To study the most intense hur-

ricanes, we have performed an additional downscaling

step on the individual storms in the ZETACmodel, using

two versions of a 9-km grid operational hurricane pre-

diction model with ocean coupling (Bender et al. 2010).

This hurricanemodel has been developed and refined for

operational hurricane prediction use, and thus it can

simulate more intense systems and more realistic spatial

structures for hurricanes than the lower-resolution

downscaling models.

Several findings with varying degrees of robustness

have emerged from this study. One of the most striking

features from the ZETAC regionalmodel is its consistent

projection of fewer Atlantic tropical storms in warmer

climates. The ensemble model changes are 227%

(CMIP3), 220% (CMIP5-early), and 223% (CMIP5-

late) and all statistically significant. The range across in-

dividual CMIP3 models is 262% to 18%, with 5 of the

10models showing a statistically significant decrease. Our

results quoted above from the ZETAC regional model

are overall rather similar to those from the C180 global

model (Fig. 2). On the other hand, as shown in a recent

review (Knutson et al. 2010), agreement on the sign of the

projected change of Atlantic tropical storm frequency

results is not as robust when one considers other pub-

lished studies. Examples of studies that project at least

nominally positive changes in Atlantic tropical storm

frequency include Sugi et al. (2002), Oouchi et al. (2006),

Chauvin et al. (2006; one of two models), Emanuel et al.

(2008), Sugi et al. (2009; six of eight experiments), and

Murakami et al. (2012; one of threemultimodel ensemble

experiments). Further insight on the differences in model

projections can be gained by replotting the tropical storm

frequency projections of several published studies in

a scatterplot (Fig. 12) against the statistical downscaling

projection of Villarini et al. (2011). The Villarini et al.

(2011) projected changes are approximately proportional

to the change in relative SST for the MDR. The com-

parison shows that dynamical models projecting increased

tropical storm frequency were usually forced with (or had

computed within the model) SST warming in the tropical

Atlantic that exceeded the tropical mean warming. The

variance explained by the statistical downscaling model is

55%. Thus, the analysis helps to reconcile the differences

between previously published Atlantic tropical storm

projections and our current results.

A second robust result is the contrasting change in

storm frequency for weak versus strong tropical cyclones.

The projections typically show a reduction in the overall

frequency of tropical storms and hurricanes but with an

increase in the frequency of the most intense hurricanes

simulated. The transition from decreasing to increasing

storm frequency, as onemoves to higher intensity classes,

is one of the most robust intensity-related features in our

hurricane model simulations. This transition is seen most
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clearly in the figures examining changes in the frequency

of different categories of storms (Fig. 1) but is also ap-

parent in the histograms of storm intensities for the

hurricane model (Figs. 4, 5). The feature is more pro-

nounced in the hurricane model than in the ZETAC re-

gional model (Fig. 1). We have emphasized the hurricane

model results in our assessment of strong intensities be-

cause that model has a much more realistic simulation of

intense hurricanes than the ZETAC regional model. The

projected increase in category 4 and 5 hurricane fre-

quencies in the hurricane model (187%) is statistically

significant in our experiments for the CMIP3 18-model

ensemble climate change and for 3 of the 10 individual

CMIP3 models (Fig. 1; Table 5). This feature is also

present in theCMIP5 (early- and late-twenty-first century)

downscalings, although there the change is smaller in

magnitude (145% and 139%, respectively) and only

marginally significant, particularly for the CMIP5-late

ensemble. A less robust change in intense storm fre-

quencies is derived by using a statistical refinement of

the ZETAC intensities (Table 4), as opposed to dy-

namical downscaling using the hurricane model.

The related increase inmean lifetimemaximum storm

intensity is apparent in the simulations—particularly in

the (higher resolution) hurricanemodel downscaling runs

shown in Table 4—and is more pronounced for storms of

at least hurricane intensity than for all tropical cyclones

with winds exceeding 17ms21. In Knutson et al. (2010),

the globally averaged mean intensity of tropical cyclones

was assessed as likely to increase with climate warming,

although they noted that the uncertainties of such pro-

jections were larger for individual basins. In their Table S2

(intensity projections), the published intensity projections

for the Atlantic basin showed relatively small changes in

FIG. 12. Comparison of published dynamical model projections of Atlantic basin tropical

storm frequency changes vs the statistical downscaling model of Villarini et al. (2011), which is

based on relative SST changes. The figure shows that inmost cases where the dynamicalmodels

projected increased tropical storm frequency, those models were usually being forced with or

had internally computed SSTwarming of the tropical Atlantic that exceeded the tropical mean.

The blue stars depict the CMIP3, CMIP5-early, and CMIP5-late multimodel ensemble results

from the ZETAC model.
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some studies and ranged even to negative values for some

individual models that were analyzed (e.g., Vecchi and

Soden 2007b). In a recent idealized study with regional

models of 6- and 2-km grid spacing, Hill and Lackmann

(2011) report an intensity increase of 9%–14% for the late-

twenty-first-centuryAtlantic conditions in terms of central

pressure deficit. Dividing by two for a rough comparison

with our wind speed results, Hill and Lackmann’s pro-

jections would be a 4.5% and 7% increase for the 6- and

2-km model. Our current results for hurricane intensities

(a statistically significant14% to16% increase for the

CMIP3 and CMIP5-early and CMIP5-late multimodel

ensemble conditions, with a range of23% to111% for

individual CMIP3 models) are generally consistent with

these earlier findings. Individual model downscaling for

this metric tend to show a larger range than the multi-

model ensemble downscalings (and are based on a smaller

sample of years in our study), although even those results

show a clear preference for an increase.

While very intense hurricanes are relatively rare, their

importance is considerable. For example, Mendelsohn

et al. (2012) note, ‘‘With the present climate, almost 93%

of tropical cyclone damage is caused by only 10% of the

storms.’’ Of even greater relevance to our results is an

analysis of U.S. hurricane damage statistics partitioned by

storm category (Pielke et al. 2008). They conclude that

category 4 and 5 hurricanes were responsible for nearly half

of the historical U.S. hurricane damage, even though they

account for only about 15% of U.S. landfalling tropical cy-

clones. Clearly, the strongest tropical cyclones inflict a dis-

proportionate impact on society in terms of storm damage.

A final robust feature of our simulations is the increase

in storm-related precipitation rates, which is significant

in the CMIP3 and CMIP5 (early- and late-twenty-first

century) ensemble projections and for most of the in-

dividual CMIP3 models examined. The fractional rate of

increase is amplified for averaging radii less than about

150 km (Fig. 11). Our results show that the hurricane

precipitation rate increases robustly in the warm-climate

simulations in both the ZETAC regional model and the

GFDL hurricane model. The near-storm amplification is

larger in the hurricanemodel than in the ZETAC regional

model. Increases of order 20% (33%) occur at averaging

radii of 100 (50) km, respectively, for the hurricanemodel.

At relatively larger averaging radii (roughly 200–400km),

the model results appear to asymptote to change levels

close to what would be expected from simple Clausius–

Clapeyron atmospheric water vapor scaling arguments.

Our precipitation results are broadly consistent with

and provide further support for results in a recent review

of tropical cyclone climate change simulation studies

(Knutson et al. 2010) and with the recent Atlantic hur-

ricane downscaling study of Hill and Lackmann (2011).

A notable difference relative to our previously pub-

lished work (Bender et al. 2010) is that the CMIP5/

RCP4.5 ensemble climate change projections (early- and

late-twenty-first century), when downscaled, lead to only

marginally significant (145% and 139%) increases in

the frequency of category 4 and 5 hurricanes. In contrast,

the CMIP3–A1B ensemble leads to a larger (187%)

statistically significant increase in category 4 and 5 hur-

ricanes. Our results for high-intensity storms can also be

compared with those ofMurakami et al. (2012), who used

a high-resolution global model but reported category 5

storm results also for the Atlantic basin for a late-twenty-

first-century CMIP3–A1B ensemble scenario (auxiliary

information provided by H. Murakami 2011, personal

communication). Their model projects a nonsignificant

increase in category 4 and 5 storm days in the Atlantic

basin (115%) and globally (14%). For category 5 storm

days, their model projects significant increases (156%

globally and 1290% in the Atlantic basin). There are

several important caveats to the results from the various

models. For example, the GFDL hurricane model has

a substantial (;50%) lowbias in its simulation ofAtlantic

category 4 and 5 hurricane frequency under present cli-

mate conditions (1980–2006). Murakami et al. (2012)

report a relatively small bias in their present-day simu-

lation of Atlantic category 5 storm days but a large pos-

itive bias (almost a factor of 4) in their simulation of

Atlantic category 4 and 5 storm days. In addition, the

global model used by Murakami et al. (2012) does not

include an interactive ocean component, in contrast to

the hurricanemodel used in the present study andBender

et al. (2010).

The underestimation of category 4 and 5 storm fre-

quency in our hurricane model simulations compared to

observations (Table 4) is a limitation of our modeling

system in the context of this paper and Bender et al.

(2010). However, we are not aware of any other dynam-

ical modeling study to date that produces a more realistic

simulation of Atlantic category 4 and 5 frequency, in-

cluding the multidecadal variation of storm intensity

(Bender et al. 2010, their Figs. 1a–d). Our judgment is

that the intensity distribution in our model is realistic

enough at the category 4 and 5 level that we can start to

take the frequency projections of these very intense

storms seriously. We have chosen to present changes in

category 4 and 5 storm numbers in terms of fractional

changes rather than absolute changes because of the bias

in our control simulations. It is our judgment that this is

an appropriate way to attempt to account for the bias

at the present time. A more satisfying remedy awaits

improvements in ourmodel [e.g., increase of resolution to

better resolve the storm core and eyewall region; Chen

et al. (2007); Gentry and Lackmann (2010)], which we
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hope will lead to a simulated frequency of category 4 and

5 storms that is closer to the observed.

The question arises whether the projected increases in

category 4 and 5 storm frequencies would be detectable

in the twenty-first century if they occurred. Bender et al.

(2010) estimated that the CMIP3–A1B increase of about

10% decade21 would require roughly 6 decades to be

detectable as a linear trend. The projected change for

CMIP5-early of a 45% increase for 2016–35 compared to

1986–2005 is another possible candidate signal for de-

tection. The difficulty is in estimating the internal vari-

ability noise in which this signal would be embedded. In

an idealized assumption, we can try to estimate the noise

from the examination of the category 4 and 5 observa-

tions (see supplemental material of Bender et al. 2010).

If the internal variability is estimated from either the

raw observations or as the residual from a linear trend

through the observed data, then the projected change

(45%) would not be significant. However, if we assume

that the forced signal in category 4 and 5 hurricanes is

a fourth-order polynomial fit through the original ob-

served time series and the residual from this fourth-order

fit is the internal variability, then the projected CMIP5-

early signal would be detectable above the internal vari-

ability noise. In short, this idealized analysis suggests that

whether the increase in category 4 and 5 frequency we

project for the CMIP5 scenario will detectable or not

depends on the estimate of internal variability noise,

which remains uncertain at this time.

Considering hurricanes with winds exceeding 65m s21

(which occur about once per decade in the control run

comparedwith about once every 2 yr in the observations),

the 18-model ensemble-mean CMIP3 change from the

hurricane model is statistically significant (1250%),

compared to smaller (nonsignificant) changes of183%

for both CMIP5-early and CMIP5-late models. Of the

10 individual CMIP3 models, 3 showed a significant in-

crease. Note that the low bias in such storms (about 20%

of the observed rate) is even more severe than the;50%

low bias for category 4 and 5 storms as discussed above.

Our future plans include possibly redoing these experi-

ments with a higher-resolution version of our hurricane

model (6-km inner mesh) that is currently under de-

velopment, in order to improve the control simulations of

these extreme events. In addition, the statistical signifi-

cance of some of our results might be enhanced through

longer simulations even for the present models.

Overall, our results provide further support to previous

studies projecting that anthropogenic warming in the At-

lantic basin over the twenty-first century will lead to fewer

tropical storms and hurricanes overall but that the mean

intensity of Atlantic hurricanes basinwide will increase.

A projected increase in the frequency of very intense

(categories 4 and 5) hurricanes is statistically significant for

the CMIP3 ensemble climate change but only marginally

significant for the CMIP5 early- and late-twenty-first-

century ensembles. A robust signal is that tropical storms

and hurricanes in thewarmer climate are projected to have

substantially higher rainfall rates than those in the current

climate. The projected hurricane precipitation rate in-

crease by the late-twenty-first-century scales roughly with

the fractional increase in total precipitable water vapor

content (;111%), particularly at relatively larger radii

(200–400km), but shows even larger fractional increases

(order 120%–30%) near the hurricane core.
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