11 research outputs found

    Effect of Mixed Acid Catalysis on Pretreatment and Enzymatic Digestibility of Sugar Cane Bagasse

    No full text
    Aqueous pretreatment using homogeneous acid catalyst is considered as a low-cost technology in the production of lignocellulosic bioethanol. To establish the synergism of mixed acids, pilot-level aqueous pretreatments of bagasse covering a wide range of combined severity (CS) were carried out. To investigate the effect of application of mixture of acids on xylose hydrolysis as well as glucose hydrolysis via pretreatment and enzymatic hydrolysis, the following three combinations of acids were explored: (1) oxalic acid + sulfuric acid (organic + mineral acid), (2) phosphoric + sulfuric acid (mineral acids), and (3) ferric chloride + sulfuric acid (Lewis acid with a mineral acid). Of the pretreatments evaluated, the synergism was most pronounced for the combination of sulfuric and phosphoric acid, which resulted in more than 90% conversion of hemicellulose to xylose and 70% conversion of cellulose to glucose through enzymatic hydrolysis. Fourier transform infrared (FTIR) studies of pretreated samples showed higher syringyl/guaiacyl (S/G) ratio for sulfuric and phosphoric acid combination pretreatment, leading to higher enzymatic conversion. FTIR and dynamic light scattering (DLS) experiments conducted on pretreated sugar cane bagasse provided useful correlation with regard to the pretreatment type, particle size, and enzymatic hydrolysis

    Persistence of spike-specific immune responses in BNT162b2-vaccinated donors and generation of rapid ex-vivo T cells expansion protocol for adoptive immunotherapy: A pilot study

    No full text
    Introduction: The BNT162b2 mRNA-based vaccine has shown high efficacy in preventing COVID-19 infection but there are limited data on the types and persistence of the humoral and T cell responses to such a vaccine. Methods: Here, we dissect the vaccine-induced humoral and cellular responses in a cohort of six healthy recipients of two doses of this vaccine. Results and discussion: Overall, there was heterogeneity in the spike-specific humoral and cellular responses among vaccinated individuals. Interestingly, we demonstrated that anti-spike antibody levels detected by a novel simple automated assay (Jess) were strongly correlated (r=0.863, P<0.0001) with neutralizing activity; thus, providing a potential surrogate for neutralizing cell-based assays. The spike-specific T cell response was measured with a newly modified T-spot assay in which the high-homology peptide-sequences cross-reactive with other coronaviruses were removed. This response was induced in 4/6 participants after the first dose, and all six participants after the second dose, and remained detectable in 4/6 participants five months post-vaccination. We have also shown for the first time, that BNT162b2 vaccine enhanced T cell responses also against known human common viruses. In addition, we demonstrated the efficacy of a rapid ex-vivo T cell expansion protocol for spike-specific T cell expansion to be potentially used for adoptive-cell therapy in severe COVID-19, immunocompromised individuals, and other high-risk groups. There was a 9 to 13.7-fold increase in the number of expanded T cells with a significant increase of anti-spike specific response showing higher frequencies of both activation and cytotoxic markers. Interestingly, effector memory T cells were dominant in all four participants’ CD8+ expanded memory T cells; CD4+ T cells were dominated by effector memory in 2/4 participants and by central memory in the remaining two participants. Moreover, we found that high frequencies of CD4+ terminally differentiated memory T cells were associated with a greater reduction of spike-specific activated CD4+ T cells. Finally, we showed that participants who had a CD4+ central memory T cell dominance expressed a high CD69 activation marker in the CD4+ activated T cells.This research was funded by Academic Health System, Medical Research Center, Hamad Medical Corporation, Doha, Qatar, grant number MRC-01-21-113, and the Article Processing Charges was funded by Academic Health System, Medical Research Center, Hamad Medical Corporation, Doha, Qatar. The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article, or the decision to submit it for publication
    corecore