36 research outputs found

    Functional modularity of nuclear hormone receptors in a Caenorhabditis elegans metabolic gene regulatory network

    Get PDF
    We present the first gene regulatory network (GRN) that pertains to post-developmental gene expression. Specifically, we mapped a transcription regulatory network of Caenorhabditis elegans metabolic gene promoters using gene-centered yeast one-hybrid assays. We found that the metabolic GRN is enriched for nuclear hormone receptors (NHRs) compared with other gene-centered regulatory networks, and that these NHRs organize into functional network modules.The NHR family has greatly expanded in nematodes; C. elegans has 284 NHRs, whereas humans have only 48. We show that the NHRs in the metabolic GRN have metabolic phenotypes, suggesting that they do not simply function redundantly.The mediator subunit MDT-15 preferentially interacts with NHRs that occur in the metabolic GRN.We describe an NHR circuit that responds to nutrient availability and propose a model for the evolution and organization of NHRs in C. elegans metabolic regulatory networks

    A first version of the Caenorhabditis elegans Promoterome

    Get PDF
    An important aspect of the development of systems biology approaches in metazoans is the characterization of expression patterns of nearly all genes predicted from genome sequences. Such localizome maps should provide information on where (in what cells or tissues) and when (at what stage of development or under what conditions) genes are expressed. They should also indicate in what cellular compartments the corresponding proteins are localized. Caenorhabditis elegans is particularly suited for the development of a localizome map since all its 959 adult somatic cells can be visualized by microscopy, and its cell lineage has been completely described. Here we address one of the challenges of C. elegans localizome mapping projects: that of obtaining a genome-wide resource of C. elegans promoters needed to generate transgenic animals expressing localization markers such as the green fluorescent protein (GFP). To ensure high flexibility for future uses, we utilized the newly developed MultiSite Gateway system. We generated and validated version 1.1 of the Promoterome: a resource of approximately 6000 C. elegans promoters. These promoters can be transferred easily into various Gateway Destination vectors to drive expression of markers such as GFP, alone (promoter::GFP constructs), or in fusion with protein-encoding open reading frames available in ORFeome resources (promoter::ORF::GFP)

    Sequence variation in the human transcription factor gene POU5F1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>POU5F1 expression is required to maintain stem cell pluripotency and for primordial germ cells to retain proliferative capability in embryonic development. Recent evidence suggests that <it>POU5F1 </it>may also be a testicular germ cell carcinoma (TGCC) oncogene, and <it>POU5F1 </it>variation may influence TGCC risk. As an important first step to a genetic association study, we sought to identify all common sequence variants in an 11.3 kb region containing <it>POU5F1</it>, and to describe the linkage disequilibrium patterns, using DNA from individuals of African-descent (AD) and European-descent (ED).</p> <p>Results</p> <p>A higher number of polymorphisms was observed in the AD (n = 102) versus ED (n = 82) population. Among the 41 observed haplotypes, 21 (51%) and 12 (29%) were unique to the AD and ED populations, respectively, while 8 (20%) were observed in both. The number of tagging polymorphisms necessary to explain at least 80% of common variation (minor allele frequency ≄ 0.10) due to the remaining untyped polymorphisms was 17 for an AD and 10 for an ED population, providing a 4.0- and 7.0-fold gain in genotyping efficiency for characterizing nucleotide variation, respectively.</p> <p>Conclusion</p> <p><it>POU5F1 </it>is highly polymorphic, however a smaller subset of polymorphisms can tag the observed genetic variation with little loss of information.</p

    Big brother’s little sister: the ideological construction of women’s super league

    Get PDF
    This article explores the structure and culture of the Football Association (FA) in relation to the development of England’s first semiprofessional female soccer league—Women’s Super League (WSL). Through observations and interviews, we examined the planning and operationalization of WSL. Drawing on critical feminist literature and theories of organizational change, we demonstrate the FA’s shift from tolerance of the women’s game, through opposition, to defining and controlling elite female club football as a new product shaped by traditional conceptualizations of gender. The labyrinthine structures of the FA abetted the exclusion of pre-WSL stakeholders, allowing the FA to fashion a League imagined as both qualitatively different to elite men’s football in terms of style of play, appealing to a different fan base, yet inextricably bound to men’s clubs for support. It concludes by providing recommendations for how organizational change might offer correctives to the FA approach to developing WSL

    Generation of the Brucella melitensis ORFeome version 1.1.

    Get PDF
    The bacteria of the Brucella genus are responsible for a worldwide zoonosis called brucellosis. They belong to the alpha-proteobacteria group, as many other bacteria that live in close association with a eukaryotic host. Importantly, the Brucellae are mainly intracellular pathogens, and the molecular mechanisms of their virulence are still poorly understood. Using the complete genome sequence of Brucella melitensis, we generated a database of protein-coding open reading frames (ORFs) and constructed an ORFeome library of 3091 Gateway Entry clones, each containing a defined ORF. This first version of the Brucella ORFeome (v1.1) provides the coding sequences in a user-friendly format amenable to high-throughput functional genomic and proteomic experiments, as the ORFs are conveniently transferable from the Entry clones to various Expression vectors by recombinational cloning. The cloning of the Brucella ORFeome v1.1 should help to provide a better understanding of the molecular mechanisms of virulence, including the identification of bacterial protein-protein interactions, but also interactions between bacterial effectors and their host's targets

    A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity

    Get PDF
    MicroRNAs (miRNAs) and transcription factors (TFs) are primary metazoan gene regulators. Whereas much attention has focused on finding the targets of both miRNAs and TFs, the transcriptional networks that regulate miRNA expression remain largely unexplored. Here, we present the first genome-scale Caenorhabditis elegans miRNA regulatory network that contains experimentally mapped transcriptional TF → miRNA interactions, as well as computationally predicted post-transcriptional miRNA → TF interactions. We find that this integrated miRNA network contains 23 miRNA ↔ TF composite feedback loops in which a TF that controls a miRNA is itself regulated by that same miRNA. By rigorous network randomizations, we show that such loops occur more frequently than expected by chance and, hence, constitute a genuine network motif. Interestingly, miRNAs and TFs in such loops are heavily regulated and regulate many targets. This “high flux capacity” suggests that loops provide a mechanism of high information flow for the coordinate and adaptable control of miRNA and TF target regulons

    Characterization of Bacterial and Fungal Soil Communities by Automated Ribosomal Intergenic Spacer Analysis Fingerprints: Biological and Methodological Variability

    No full text
    Automated rRNA intergenic spacer analysis (ARISA) was used to characterise bacterial (B-ARISA) and fungal (F-ARISA) communities from different soil types. The 16S-23S intergenic spacer region from the bacterial rRNA operon was amplified from total soil community DNA for B-ARISA. Similarly, the two internal transcribed spacers and the 5.8S rRNA gene (ITS1-5.8S-ITS2) from the fungal rRNA operon were amplified from total soil community DNA for F-ARISA. Universal fluorescence-labeled primers were used for the PCRs, and fragments of between 200 and 1,200 bp were resolved on denaturing polyacrylamide gels by use of an automated sequencer with laser detection. Methodological (DNA extraction and PCR amplification) and biological (inter- and intrasite) variations were evaluated by comparing the number and intensity of peaks (bands) between electrophoregrams (profiles) and by multivariate analysis. Our results showed that ARISA is a high-resolution, highly reproducible technique and is a robust method for discriminating between microbial communities. To evaluate the potential biases in community description provided by ARISA, we also examined databases on length distribution of ribosomal intergenic spacers among bacteria (L. Ranjard, E. Brothier, and S. Nazaret, Appl. Environ. Microbiol. 66:5334–5339, 2000) and fungi

    A gene-centered C. elegans protein-DNA interaction network

    No full text
    Transcription regulatory networks consist of physical and functional interactions between transcription factors (TFs) and their target genes. The systematic mapping of TF-target gene interactions has been pioneered in unicellular systems, using "TF-centered" methods (e.g., chromatin immunoprecipitation). However, metazoan systems are less amenable to such methods. Here, we used "gene-centered" high-throughput yeast one-hybrid (Y1H) assays to identify 283 interactions between 72 C. elegans digestive tract gene promoters and 117 proteins. The resulting protein-DNA interaction (PDI) network is highly connected and enriched for TFs that are expressed in the digestive tract. We provide functional annotations for approximately 10% of all worm TFs, many of which were previously uncharacterized, and find ten novel putative TFs, illustrating the power of a gene-centered approach. We provide additional in vivo evidence for multiple PDIs and illustrate how the PDI network provides insights into metazoan differential gene expression at a systems level
    corecore