28 research outputs found
Examining the dynamics of a Borneo vortex using a balance approximation tool
Cyclonic vortices that are weaker than tropical storm category can bring heavy precipitation as they propagate across the South China Sea and surrounding countries. Here we investigate the structure and dynamics responsible for the intensification of a Borneo vortex that moved from the north of Borneo across the South China Sea and impacted Vietnam and Thailand in late October 2018. This case study is examined using Met Office Unified Model (MetUM) simulations and a semi-geotriptic (SGT) balance approximation tool. Satellite observations and a MetUM simulation with 4.4 km grid initialised at 12:00 UTC on 21 October 2018 show that the westward-moving vortex is characterised by a coherent maximum in total column water and by a comma-shaped precipitation structure with the heaviest rainfall to the northwest of the circulation centre. The Borneo vortex comprises a low-level cyclonic circulation and a mid-level wave embedded in the background easterly shear flow, which strengthens with height up to around 7 km. Despite being in the tropics at 6∘ N, the low-level vortex and mid-level wave are well represented by SGT balance dynamics. The mid-level wave propagates along a vertical gradient in moist stability, i.e. the product between the specific humidity and the static stability, at 4.5 to 5 km and is characterised by a coherent signature in the potential vorticity, meridional wind, and balanced vertical velocity fields. The vertical motion is dominated by coupling with diabatic heating and is shifted relative to the potential vorticity so that the diabatic wave propagates westwards, relative to the flow, at a rate consistent with prediction from moist semi-geostrophic theory. Initial vortex development at low levels is consistent with baroclinic growth initiated by the mid-level diabatic Rossby wave, which propagates on baroclinic shear flow on the southern flank of a large-scale cold surge
Intensity fluctuations in Hurricane Irma (2017) during a period of rapid intensification
This study aims to understand the fluctuations observed in Hurricane Irma (2017), which change the tangential wind speed and the size of the radius of maximum surface wind and therefore affect short-term destructive potential. Intensity fluctuations observed during a period of rapid intensification of Hurricane Irma between 4 and 6 September 2017 are investigated in a detailed modelling study using an ensemble of Met Office Unified Model (MetUM) convection-permitting forecasts. Although weakening and strengthening phases were defined using 10 m wind, structural changes in the storm were observed through the lower troposphere, with the most substantial changes just above the boundary layer (at around 1500 m). Isolated regions of rotating deep convection, coupled with outward propagating vortex Rossby waves, develop during the strengthening phases. Although these isolated convective structures initially contribute to the increase in azimuthally averaged tangential wind through positive radial eddy vorticity fluxes, the continued outward expansion of convection eventually leads to a negative radial eddy vorticity flux, which halts the strengthening of the tangential wind above the boundary layer at the start of the weakening phase. The outward expansion of the azimuthally averaged convection also enhances the outflow above the boundary layer in the eyewall region, as the convection is no longer strong enough to ventilate the mass inflow from the boundary layer in a process similar to one described in a recent idealised study.</p
On the Relationship Between the Madden‐Julian Oscillation and the Hadley and Walker Circulations
This study investigates: (i) how the local meridional (Hadley) and zonal (Walker) circulations change in each phase of the Madden‐Julian Oscillation (MJO); and (ii) the effect of enhanced and suppressed MJO‐related convection on the poleward extent of the local Hadley circulations and, thus, the strengths and positions of the subtropical jets. We examine these effects in ERA‐Interim reanalysis by decomposing the vertical mass flux into zonal and meridional components. We show for the first time, that as the envelope of enhanced convection moves eastwards from Africa to the Central Pacific the local Hadley circulation is enhanced. The regional Walker circulation in the Pacific is strengthened when the envelope of active MJO convection is located over the Maritime Continent and weakened when the region of suppressed convection is located there. In regions of anomalous upper‐level divergence the subtropical jet is enhanced. The core of the subtropical jet over Asia shifts eastwards with the progression of the MJO and shifts farther poleward in regions of anomalous upper‐level divergence linked with enhanced convection. The region of either enhanced or suppressed convection over the Maritime Continent strengthens or weakens the local Hadley circulation, producing disturbances in the subtropical jet. These disturbances then force midlatitude Rossby waves that propagate across the Pacific Ocean in both hemispheres
Impacts of free tropospheric turbulence parametrisation on a sheared tropical cyclone
The turbulent transport of momentum, heat, and moisture can impact tropical cyclone intensity. However, representing subgrid-scale turbulence accurately in numerical weather prediction models is challenging due to a lack of observational data. To address this issue, a case study of Hurricane Maria was conducted to analyse the influence of different free tropospheric turbulence parametrisations on sheared tropical cyclones. The study used the current Met Office Unified Model (MetUM) parametrisation, as well as a parametrisation scheme with significantly reduced free tropospheric mixing length. Convection-permitting ensemble simulations were performed for both mixing schemes at two initialisation times (four 18-member ensembles in total), revealing an improvement in the intensity forecasts of Hurricane Maria when the mixing length was decreased in the free troposphere. By implementing this change, the less diffuse simulations presented a drier mid-level. The resolved downward transport of drier air from the mid-levels into the inflow layer (so-called “downdraft ventilation”) was thus more effective in reducing the storm's intensity. In contrast to earlier studies, where decreasing the diffusivity in the boundary layer intensified the storm, we show that decreasing the free tropospheric diffusivity can weaken the storm by enhancing shear-related weakening processes. While this study was performed using the MetUM, the findings highlight the general importance of considering turbulence parametrisation, and show that changes in diffusivity can have different impacts on storm intensity depending on the environment and where the changes are applied
Trends in the local Hadley and local Walker circulations
The linear trend in the local Hadley and Walker circulations from 1979 to 2009 is calculated. These local circulations are defined through a decomposition of the vertical mass flux into its zonal and meridional components. Defining the local circulation this way ensures that the two orthogonal circulations (the local Hadley and Walker circulations) sum to the original circulation even after averaging the circulations regionally. Large regional differences in changes in the local Hadley and Walker circulations over a 31 year period are found. For example, the local Hadley circulation has shifted southward over Africa, the Maritime Continent, and the western and central Pacific by about 1°. Over the Americas and the Atlantic the local Hadley circulation has strengthened by about 1-5%. The zonal component of the vertical mass flux has increased by about 10-20% in the tropics over all continents and decreased over the adjacent oceans by about 10-20%. Although the local Walker circulations in the Indian Ocean and the Atlantic have weakened, the circulation in the Pacific has changed little (about 1-2%). The local Walker circulations in all ocean basins have shifted westward by about 1-2°on average
Recommended from our members
A local-to-large scale view of Maritime Continent rainfall: control by ENSO, MJO, and equatorial waves
The canonical view of the Maritime Continent (MC) diurnal cycle is deep convection occurring over land during the afternoon and evening, tending to propagate offshore overnight. However, there is considerable day-to-day variability in the convection, and the mechanism of the offshore propagation is not well understood. We test the hypothesis that large-scale drivers such as ENSO, the MJO, and equatorial waves, through their modification of the local circulation, can modify the direction or strength of the propagation, or prevent the deep convection from triggering in the first place. Taking a local-to-large scale approach, we use in situ observations, satellite data, and reanalyses for five MC coastal regions, and show that the occurrence of the diurnal convection and its offshore propagation is closely tied to coastal wind regimes that we define using the k-means cluster algorithm. Strong prevailing onshore winds are associated with a suppressed diurnal cycle of precipitation, while prevailing offshore winds are associated with an active diurnal cycle, offshore propagation of convection, and a greater risk of extreme rainfall. ENSO, the MJO, equatorial Rossby waves, and westward mixed Rossby–gravity waves have varying levels of control over which coastal wind regime occurs, and therefore on precipitation, depending on the MC coastline in question. The large-scale drivers associated with dry and wet regimes are summarized for each location as a reference for forecasters
Recommended from our members
The roles of static stability and tropical – extratropical interactions in the summer interannual variability of the North Atlantic sector
Summer seasonal forecast skill in the North Atlantic sector is lower than winter skill. To identify potential controls on predictability, the sensitivity of North Atlantic baroclinicity to atmospheric drivers is quantified. Using ERA-INTERIM reanalysis data, North Atlantic storm-track baroclinicity is shown to be less sensitive to meridional temperature-gradient variability in summer. Static stability shapes the sector’s interannual variability by modulating the sensitivity of baroclinicity to variations in meridional temperature gradients and tropopause height and by modifying the baroclinicity itself. High static stability anomalies at upper levels result in more zonal extratropical cyclone tracks and higher eddy kinetic energy over the British Isles in the summertime. These static stability anomalies are not strongly related to the summer NAO; but they are correlated with the suppression of convection over the tropical Atlantic and with a poleward-shifted subtropical jet. These results suggest a non-local driver of North Atlantic variability. Furthermore, they imply that improved representations of convection over the south-eastern part of North America and the tropical Atlantic might improve summer seasonal forecast skill
Revisiting gradient wind balance in tropical cyclones using dropsonde observations
This study diagnoses the degree of gradient wind balance (GWB) in dropsonde observations of 30 tropical cyclones (TCs) divided into 91 intense observation periods. The diagnosed GWB in these observation periods are composited to investigate which characteristics of a TC are significantly related to departures from GWB. This analysis confirms that on average the flow above the boundary layer is approximately in GWB. Supergradient flow is more common near the radius of maximum wind (RMW) in the upper boundary layer than above in the free troposphere or outside the RMW and is also more common in strong storms than in weak storms. In contrast, the degree of GWB does not differ between intensifying, steady‐state and weakening storms. Storms with a peaked wind profile have a higher probability of showing supergradient winds than those with a flat wind profile. The comparison of two commonly used functions to fit observations shows that the diagnosing GWB from dropsonde observations is highly dependent on the analysis technique. The agradient wind magnitude and even sign is shown to depend on which of these functions is used to fit the observations. The use of a polynomial fit consistently diagnoses the presence of supergradient winds far more frequently than a piece‐wise function, and also shows a marked degree of imbalance above the boundary layer. Therefore, caution is warranted when determining the degree of GWB with a polynomial fit
Revisiting gradient wind balance in tropical cyclones using dropsonde observations
This study diagnoses the degree of gradient wind balance (GWB) in dropsonde observations of 30 tropical cyclones (TCs) divided into 91 intense observation periods. The diagnosed GWB in these observation periods are composited to investigate which characteristics of a TC are significantly related to departures from GWB. This analysis confirms that on average the flow above the boundary layer is approximately in GWB. Supergradient flow is more common near the radius of maximum wind (RMW) in the upper boundary layer than above in the free troposphere or outside the RMW and is also more common in strong storms than in weak storms. In contrast, the degree of GWB does not differ between intensifying, steady‐state and weakening storms. Storms with a peaked wind profile have a higher probability of showing supergradient winds than those with a flat wind profile. The comparison of two commonly used functions to fit observations shows that the diagnosing GWB from dropsonde observations is highly dependent on the analysis technique. The agradient wind magnitude and even sign is shown to depend on which of these functions is used to fit the observations. The use of a polynomial fit consistently diagnoses the presence of supergradient winds far more frequently than a piece‐wise function, and also shows a marked degree of imbalance above the boundary layer. Therefore, caution is warranted when determining the degree of GWB with a polynomial fit