413 research outputs found

    Generalizing with perceptrons in case of structured phase- and pattern-spaces

    Full text link
    We investigate the influence of different kinds of structure on the learning behaviour of a perceptron performing a classification task defined by a teacher rule. The underlying pattern distribution is permitted to have spatial correlations. The prior distribution for the teacher coupling vectors itself is assumed to be nonuniform. Thus classification tasks of quite different difficulty are included. As learning algorithms we discuss Hebbian learning, Gibbs learning, and Bayesian learning with different priors, using methods from statistics and the replica formalism. We find that the Hebb rule is quite sensitive to the structure of the actual learning problem, failing asymptotically in most cases. Contrarily, the behaviour of the more sophisticated methods of Gibbs and Bayes learning is influenced by the spatial correlations only in an intermediate regime of α\alpha, where α\alpha specifies the size of the training set. Concerning the Bayesian case we show, how enhanced prior knowledge improves the performance.Comment: LaTeX, 32 pages with eps-figs, accepted by J Phys

    Enhanced Shot Noise in Tunneling through a Stack of Coupled Quantum Dots

    Get PDF
    We have investigated the noise properties of the tunneling current through vertically coupled self-assembled InAs quantum dots. We observe super-Poissonian shot noise at low temperatures. For increased temperature this effect is suppressed. The super-Poissonian noise is explained by capacitive coupling between different stacks of quantum dots

    Shot noise in the chaotic-to-regular crossover regime

    Full text link
    We investigate the shot noise for phase-coherent quantum transport in the chaotic-to-regular crossover regime. Employing the Modular Recursive Green's Function Method for both ballistic and disordered two-dimensional cavities we find the Fano factor and the transmission eigenvalue distribution for regular systems to be surprisingly similar to those for chaotic systems. We argue that in the case of regular dynamics in the cavity, diffraction at the lead openings is the dominant source of shot noise. We also explore the onset of the crossover from quantum to classical transport and develop a quasi-classical transport model for shot noise suppression which agrees with the numerical quantum data.Comment: 4 pages, 3 figures, submitted to Phys.Rev.Let

    Phase transitions in soft-committee machines

    Get PDF
    Equilibrium statistical physics is applied to layered neural networks with differentiable activation functions. A first analysis of off-line learning in soft-committee machines with a finite number (K) of hidden units learning a perfectly matching rule is performed. Our results are exact in the limit of high training temperatures. For K=2 we find a second order phase transition from unspecialized to specialized student configurations at a critical size P of the training set, whereas for K > 2 the transition is first order. Monte Carlo simulations indicate that our results are also valid for moderately low temperatures qualitatively. The limit K to infinity can be performed analytically, the transition occurs after presenting on the order of N K examples. However, an unspecialized metastable state persists up to P= O (N K^2).Comment: 8 pages, 4 figure

    Shot Noise and Full Counting Statistics from Non-equilibrium Plasmons in Luttinger-Liquid Junctions

    Full text link
    We consider a quantum wire double junction system with each wire segment described by a spinless Luttinger model, and study theoretically shot noise in this system in the sequential tunneling regime. We find that the non-equilibrium plasmonic excitations in the central wire segment give rise to qualitatively different behavior compared to the case with equilibrium plasmons. In particular, shot noise is greatly enhanced by them, and exceeds the Poisson limit. We show that the enhancement can be explained by the emergence of several current-carrying processes, and that the effect disappears if the channels effectively collapse to one due to, {\em e.g.}, fast plasmon relaxation processes.Comment: 9 pages; IOP Journal style; several changes in the tex

    Quantum suppression of shot noise in field emitters

    Get PDF
    We have analyzed the shot noise of electron emission under strong applied electric fields within the Landauer-Buttiker scheme. In contrast to the previous studies of vacuum-tube emitters, we show that in new generation electron emitters, scaled down to the nanometer dimensions, shot noise much smaller than the Schottky noise is observable. Carbon nanotube field emitters are among possible candidates to observe the effect of shot-noise suppression caused by quantum partitioning.Comment: 5 pages, 1 fig, minor changes, published versio

    Wave-packet Formalism of Full Counting Statistics

    Full text link
    We make use of the first-quantized wave-packet formulation of the full counting statistics to describe charge transport of noninteracting electrons in a mesoscopic device. We derive various expressions for the characteristic function generating the full counting statistics, accounting for both energy and time dependence in the scattering process and including exchange effects due to finite overlap of the incoming wave packets. We apply our results to describe the generic statistical properties of a two-fermion scattering event and find, among other features, sub-binomial statistics for nonentangled incoming states (Slater rank 1), while entangled states (Slater rank 2) may generate super-binomial (and even super-Poissonian) noise, a feature that can be used as a spin singlet-triplet detector. Another application is concerned with the constant-voltage case, where we generalize the original result of Levitov-Lesovik to account for energy-dependent scattering and finite measurement time, including short time measurements, where Pauli blocking becomes important.Comment: 20 pages, 5 figures; major update, new figures and explanations included as well as a discussion about finite temperatures and subleading logarithmic term

    Shot Noise in Linear Macroscopic Resistors

    Get PDF
    We report on a direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. Present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.Comment: 10 pages, 5 figure

    Electronic thermal transport in strongly correlated multilayered nanostructures

    Full text link
    The formalism for a linear-response many-body treatment of the electronic contributions to thermal transport is developed for multilayered nanostructures. By properly determining the local heat-current operator, it is possible to show that the Jonson-Mahan theorem for the bulk can be extended to inhomogeneous problems, so the various thermal-transport coefficient integrands are related by powers of frequency (including all effects of vertex corrections when appropriate). We illustrate how to use this formalism by showing how it applies to measurements of the Peltier effect, the Seebeck effect, and the thermal conductance.Comment: 17 pages, 4 figures, submitted to Phys. Rev.
    • …
    corecore