443 research outputs found

    Quantum Error Correcting Codes Using Qudit Graph States

    Full text link
    Graph states are generalized from qubits to collections of nn qudits of arbitrary dimension DD, and simple graphical methods are used to construct both additive and nonadditive quantum error correcting codes. Codes of distance 2 saturating the quantum Singleton bound for arbitrarily large nn and DD are constructed using simple graphs, except when nn is odd and DD is even. Computer searches have produced a number of codes with distances 3 and 4, some previously known and some new. The concept of a stabilizer is extended to general DD, and shown to provide a dual representation of an additive graph code.Comment: Version 4 is almost exactly the same as the published version in Phys. Rev.

    Valence Bond Solids for Quantum Computation

    Get PDF
    Cluster states are entangled multipartite states which enable to do universal quantum computation with local measurements only. We show that these states have a very simple interpretation in terms of valence bond solids, which allows to understand their entanglement properties in a transparent way. This allows to bridge the gap between the differences of the measurement-based proposals for quantum computing, and we will discuss several features and possible extensions

    On the structure of Clifford quantum cellular automata

    Full text link
    We study reversible quantum cellular automata with the restriction that these are also Clifford operations. This means that tensor products of Pauli operators (or discrete Weyl operators) are mapped to tensor products of Pauli operators. Therefore Clifford quantum cellular automata are induced by symplectic cellular automata in phase space. We characterize these symplectic cellular automata and find that all possible local rules must be, up to some global shift, reflection invariant with respect to the origin. In the one dimensional case we also find that every uniquely determined and translationally invariant stabilizer state can be prepared from a product state by a single Clifford cellular automaton timestep, thereby characterizing these class of stabilizer states, and we show that all 1D Clifford quantum cellular automata are generated by a few elementary operations. We also show that the correspondence between translationally invariant stabilizer states and translationally invariant Clifford operations holds for periodic boundary conditions.Comment: 28 pages, 2 figures, LaTe

    Strings, Projected Entangled Pair States, and variational Monte Carlo methods

    Get PDF
    We introduce string-bond states, a class of states obtained by placing strings of operators on a lattice, which encompasses the relevant states in Quantum Information. For string-bond states, expectation values of local observables can be computed efficiently using Monte Carlo sampling, making them suitable for a variational abgorithm which extends DMRG to higher dimensional and irregular systems. Numerical results demonstrate the applicability of these states to the simulation of many-body sytems.Comment: 4 pages. v2: Submitted version, containing more numerical data. Changed title and renamed "string states" to "string-bond states" to comply with PRL conventions. v3: Accepted version, Journal-Ref. added (title differs from journal

    Fast simulation of stabilizer circuits using a graph state representation

    Full text link
    According to the Gottesman-Knill theorem, a class of quantum circuits, namely the so-called stabilizer circuits, can be simulated efficiently on a classical computer. We introduce a new algorithm for this task, which is based on the graph-state formalism. It shows significant improvement in comparison to an existing algorithm, given by Gottesman and Aaronson, in terms of speed and of the number of qubits the simulator can handle. We also present an implementation.Comment: v2: significantly improved presentation; accepted by PR

    Multiparticle entanglement purification for two-colorable graph states

    Full text link
    We investigate multiparticle entanglement purification schemes which allow one to purify all two colorable graph states, a class of states which includes e.g. cluster states, GHZ states and codewords of various error correction codes. The schemes include both recurrence protocols and hashing protocols. We analyze these schemes under realistic conditions and observe for a generic error model that the threshold value for imperfect local operations depends on the structure of the corresponding interaction graph, but is otherwise independent of the number of parties. The qualitative behavior can be understood from an analytically solvable model which deals only with a restricted class of errors. We compare direct multiparticle entanglement purification protocols with schemes based on bipartite entanglement purification and show that the direct multiparticle entanglement purification is more efficient and the achievable fidelity of the purified states is larger. We also show that the purification protocol allows one to produce private entanglement, an important aspect when using the produced entangled states for secure applications. Finally we discuss an experimental realization of a multiparty purification protocol in optical lattices which is issued to improve the fidelity of cluster states created in such systems.Comment: 22 pages, 8 figures; replaced with published versio

    Multi-party entanglement in graph states

    Full text link
    Graph states are multi-particle entangled states that correspond to mathematical graphs, where the vertices of the graph take the role of quantum spin systems and edges represent Ising interactions. They are many-body spin states of distributed quantum systems that play a significant role in quantum error correction, multi-party quantum communication, and quantum computation within the framework of the one-way quantum computer. We characterize and quantify the genuine multi-particle entanglement of such graph states in terms of the Schmidt measure, to which we provide upper and lower bounds in graph theoretical terms. Several examples and classes of graphs will be discussed, where these bounds coincide. These examples include trees, cluster states of different dimension, graphs that occur in quantum error correction, such as the concatenated [7,1,3]-CSS code, and a graph associated with the quantum Fourier transform in the one-way computer. We also present general transformation rules for graphs when local Pauli measurements are applied, and give criteria for the equivalence of two graphs up to local unitary transformations, employing the stabilizer formalism. For graphs of up to seven vertices we provide complete characterization modulo local unitary transformations and graph isomorphies.Comment: 22 pages, 15 figures, 2 tables, typos corrected (e.g. in measurement rules), references added/update

    Compact set of invariants characterizing graph states of up to eight qubits

    Full text link
    The set of entanglement measures proposed by Hein, Eisert, and Briegel for n-qubit graph states [Phys. Rev. A 69, 062311 (2004)] fails to distinguish between inequivalent classes under local Clifford operations if n > 6. On the other hand, the set of invariants proposed by van den Nest, Dehaene, and De Moor (VDD) [Phys. Rev. A 72, 014307 (2005)] distinguishes between inequivalent classes, but contains too many invariants (more than 2 10^{36} for n=7) to be practical. Here we solve the problem of deciding which entanglement class a graph state of n < 9 qubits belongs to by calculating some of the state's intrinsic properties. We show that four invariants related to those proposed by VDD are enough for distinguishing between all inequivalent classes with n < 9 qubits.Comment: REVTeX4, 9 pages, 1 figur

    Greenberger-Horne-Zeilinger paradoxes from qudit graph states

    Full text link
    One fascinating way of revealing the quantum nonlocality is the all-versus-nothing test due to Greenberger, Horne, and Zeilinger (GHZ) known as GHZ paradox. So far genuine multipartite and multilevel GHZ paradoxes are known to exist only in systems containing an odd number of particles. Here we shall construct GHZ paradoxes for an arbitrary number (greater than 3) of particles with the help of qudit graph states on a special kind of graphs, called as GHZ graphs. Based on the GHZ paradox arising from a GHZ graph, we derive a Bell inequality with two dd-outcome observables for each observer, whose maximal violation attained by the corresponding graph state, and a Kochen-Specker inequality testing the quantum contextuality in a state-independent fashion

    Two-setting Bell Inequalities for Graph States

    Full text link
    We present Bell inequalities for graph states with high violation of local realism. In particular, we show that there is a two-setting Bell inequality for every nontrivial graph state which is violated by the state at least by a factor of two. These inequalities are facets of the convex polytope containing the many-body correlations consistent with local hidden variable models. We first present a method which assigns a Bell inequality for each graph vertex. Then for some families of graph states composite Bell inequalities can be constructed with a violation of local realism increasing exponentially with the number of qubits. We also suggest a systematic way for obtaining Bell inequalities with a high violation of local realism for arbitrary graphs.Comment: 8 pages including 2 figures, revtex4; minor change
    corecore