314 research outputs found

    Predicting melatonin suppression by light in humans:Unifying photoreceptor-based equivalent daylight illuminances, spectral composition, timing and duration of light exposure

    Get PDF
    Light‐induced melatonin suppression data from 29 peer‐reviewed publications was analysed by means of a machine‐learning approach to establish which light exposure characteristics (ie photopic illuminance, five α‐opic equivalent daylight illuminances [EDIs], duration and timing of the light exposure, and the dichotomous variables pharmacological pupil dilation and narrowband light source) are the main determinants of melatonin suppression. Melatonin suppression in the data set was dominated by four light exposure characteristics: (1) melanopic EDI, (2) light exposure duration, (3) pupil dilation and (4) S‐cone‐opic EDI. A logistic model was used to evaluate the influence of each of these parameters on the melatonin suppression response. The final logistic model was only based on the first three parameters, since melanopic EDI was the best single (photoreceptor) predictor that was only outperformed by S‐cone‐opic EDI for (photopic) illuminances below 21 lux. This confirms and extends findings on the importance of the metric melanopic EDI for predicting biological effects of light in integrative (human‐centric) lighting applications. The model provides initial and general guidance to lighting practitioners on how to combine spectrum, duration and amount of light exposure when controlling non‐visual responses to light, especially melatonin suppression. The model is a starting tool for developing hypotheses on photoreceptors’ contributions to light's non‐visual responses and helps identifying areas where more data are needed, like on the S‐cone contribution at low illuminances

    Towards understanding the influence of porosity on mechanical and fracture behaviour of quasi-brittle materials:experiments and modelling

    Get PDF
    In this work, porosity-property relationships of quasi-brittle materials are explored through a combined experimental and numerical approach. In the experimental part, hemihyrate gypsum plaster powder (CaSO 4 ⋅1/2H 2 O CaSO4⋅1/2H2O) and expanded spherical polystyrene beads (1.5–2.0 mm dia.) have been mixed to form a model material with controlled additions of porosity. The expanded polystyrene beads represent pores within the bulk due to their light weight and low strength compared with plaster. Varying the addition of infill allows the production of a material with different percentages of porosity: 0, 10, 20, 30 and 31 vol%. The size and location of these pores have been characterised by 3D X-ray computed tomography. Beams of the size of 20×20×150 20×20×150 mm were cast and loaded under four-point bending to obtain the mechanical characteristics of each porosity level. The elastic modulus and flexural strength are found to decrease with increased porosity. Fractography studies have been undertaken to identify the role of the pores on the fracture path. Based on the known porosity, a 3D model of each microstructure has been built and the deformation and fracture was computed using a lattice-based multi-scale finite element model. This model predicted similar trends as the experimental results and was able to quantify the fractured sites. The results from this model material experimental data and the lattice model predictions are discussed with respect to the role of porosity on the deformation and fracture of quasi-brittle materials

    Towards understanding the influence of porosity on mechanical and fracture behaviour of quasi-brittle materials:experiments and modelling

    Get PDF
    In this work, porosity-property relationships of quasi-brittle materials are explored through a combined experimental and numerical approach. In the experimental part, hemihyrate gypsum plaster powder (CaSO 4 ⋅1/2H 2 O CaSO4⋅1/2H2O) and expanded spherical polystyrene beads (1.5–2.0 mm dia.) have been mixed to form a model material with controlled additions of porosity. The expanded polystyrene beads represent pores within the bulk due to their light weight and low strength compared with plaster. Varying the addition of infill allows the production of a material with different percentages of porosity: 0, 10, 20, 30 and 31 vol%. The size and location of these pores have been characterised by 3D X-ray computed tomography. Beams of the size of 20×20×150 20×20×150 mm were cast and loaded under four-point bending to obtain the mechanical characteristics of each porosity level. The elastic modulus and flexural strength are found to decrease with increased porosity. Fractography studies have been undertaken to identify the role of the pores on the fracture path. Based on the known porosity, a 3D model of each microstructure has been built and the deformation and fracture was computed using a lattice-based multi-scale finite element model. This model predicted similar trends as the experimental results and was able to quantify the fractured sites. The results from this model material experimental data and the lattice model predictions are discussed with respect to the role of porosity on the deformation and fracture of quasi-brittle materials

    A computational study on the intriguing mechanisms of the gas-phase thermal activation of methane by bare [Ni(H)(OH)](+)

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.A detailed computational study on the reaction mechanisms of the thermal activation of methane by the bare complex [Ni(H)(OH)]+ has been conducted. The experimentally observed reaction features, i.e. the ligand exchange Ni(H) → Ni(CH3), the H/D scrambling between the incoming methane and the hydrido ligand of the nickel complex, the spectator-like behavior of the OH ligand, and the relatively moderate reaction efficiency of 6% relative to the collision rate of the ion/molecule reaction, can be explained by considering three competing mechanisms, and a satisfactory agreement between experiment and theory has been found.DFG, EXC 314, Unifying Concepts in Catalysi

    Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat

    Get PDF
    Background: It is well known that neurons of the peripheral nervous system have the capacity to regenerate a severed axon leading to functional recovery, whereas neurons of the central nervous system do not regenerate successfully after injury. The underlying molecular programs initiated by axotomized peripheral and central nervous system neurons are not yet fully understood.Results: To gain insight into the molecular mechanisms underlying the process of regeneration in the nervous system, differential display polymerase chain reaction has been used to identify differentially expressed genes following axotomy of peripheral and central nerve fibers. For this purpose, axotomy induced changes of regenerating facial nucleus neurons, and non-regenerating red nucleus and Clarke's nucleus neurons have been analyzed in an intra-animal side-to-side comparison. One hundred and thirty five gene fragments have been isolated, of which 69 correspond to known genes encoding for a number of different functional classes of proteins such as transcription factors, signaling molecules, homeobox-genes, receptors and proteins involved in metabolism. Sixty gene fragments correspond to genomic mouse sequences without known function. In situ-hybridization has been used to confirm differential expression and to analyze the cellular localization of these gene fragments. Twenty one genes (similar to 15%) have been demonstrated to be differentially expressed.Conclusions: The detailed analysis of differentially expressed genes in different lesion paradigms provides new insights into the molecular mechanisms underlying the process of regeneration and may lead to the identification of genes which play key roles in functional repair of central nervous tissues

    The Role of Rejuvenators in Embedded Damage Healing for Asphalt Pavement

    Get PDF
    Rejuvenator encapsulation technique showed great potential for extrinsic asphalt pavement damage healing. Once the capsules are embedded within asphalt pavement, the healing is activated on-demand via progressing microcrack. When the microcrack encounters the capsule, the fracture energy at the tip opens the capsule and releases the rejuvenator. Then the released rejuvenator wets the crack surfaces, diffuses into and softens the aged bitumen, allowing two broken edges to come in the contact, preventing further asphalt pavement deterioration. The quality and speed of the damage repair process strongly depend on the quality of rejuvenator, thus it is important to choose a proper rejuvenator with good abilities to restore the lost properties of bitumen from ageing and show a sustainable performance after healing. To this aim, three different rejuvenators were studied and ranked based on the performance of their rejuvenated bitumen, including physical properties, rheological properties, chemical properties and the performance after re-ageing. Furthermore, these rejuvenators were encapsulated in calcium alginate capsules and the tests on these capsules indicate the diameter, mechanical resistance and thermal stability of the capsules are influenced by the encapsulated rejuvenator. The findings will benefit the development of rejuvenator encapsulation technique and the optimization of the capsule healing system towards a better healing effect in asphalt pavement

    Towards Deep End-of-Turn Prediction for Situated Spoken Dialogue Systems

    Get PDF
    This work was supported by the Cluster of Excellence Cognitive Interaction Technology ‘CITEC’ (EXC 277) at Bielefeld University, funded by the German Research Foundation (DFG), and the DFG-funded DUEL project (grant SCHL 845/5-1)

    Marker-Less Stage Drift Correction in Super-Resolution Microscopy Using the Single-Cluster PHD Filter

    Get PDF
    Fluorescence microscopy is a technique which allows the imaging of cellular and intracellular dynamics through the activation of fluorescent molecules attached to them. It is a very important technique because it can be used to analyze the behavior of intracellular processes in vivo in contrast to methods like electron microscopy. There are several challenges related to the extraction of meaningful information from images acquired from optical microscopes due to the low contrast between objects and background and the fact that point-like objects are observed as blurred spots due to the diffraction limit of the optical system. Another consideration is that for the study of intracellular dynamics, multiple particles must be tracked at the same time, which is a challenging task due to problems such as the presence of false positives and missed detections in the acquired data. Additionally, the objective of the microscope is not completely static with respect to the cover slip due to mechanical vibrations or thermal expansions which introduces bias in the measurements. In this paper, a Bayesian approach is used to simultaneously track the locations of objects with different motion behaviors and the stage drift using image data obtained from fluorescence microscopy experiments. Namely, detections are extracted from the acquired frames using image processing techniques, and then these detections are used to accurately estimate the particle positions and simultaneously correct the drift introduced by the motion of the sample stage. A single cluster Probability Hypothesis Density (PHD) filter with object classification is used for the estimation of the multiple target state assuming different motion behaviors. The detection and tracking methods are tested and their performance is evaluated on both simulated and real data
    • 

    corecore