99 research outputs found

    Control of Ground Movements for a Multi-Level-Anchored, Diaphragm Wall During Excavation

    Get PDF
    An excavation up to 23m deep for the Dana Farber research tower in the Longwood medical area of Boston, was supported by a permanent perimeter diaphragm wall extending into the underlying conglomerate and up to 6 levels of prestressed tiebacks anchored in the rock. The lateral earth support system was very successful in limiting wall deflections to less than ±15mm on each of the four sides of the excavation. However, ground surface settlements up to 65mm occurred on two sides and were attributed to ground losses that occurred when tiebacks were installed through overpressured sand layers at depths of 15-18m. Finite element simulations are able to describe consistently the effects of the different excavation and support sequences on each side of the project using backfigured soil properties, while surface settlements can be explained by including local ground losses within the analyses

    Delivery of GalNAc-Conjugated Splice-Switching ASOs to Non-hepatic Cells through Ectopic Expression of Asialoglycoprotein Receptor

    Get PDF
    Splice-switching antisense oligonucleotides (ASOs) are promising therapeutic tools to target various genetic diseases, including cancer. However, in vivo delivery of ASOs to orthotopic tumors in cancer mouse models or to certain target tissues remains challenging. A viable solution already in use is receptor-mediated uptake of ASOs via tissue-specific receptors. For example, the asialoglycoprotein receptor (ASGP-R) is exclusively expressed in hepatocytes. Triantennary N-acetylgalactosamine (GalNAc) (GN3)-conjugated ASOs bind to the receptor and are efficiently internalized by endocytosis, enhancing ASO potency in the liver. Here we explore the use of GalNAc-mediated targeting to deliver therapeutic splice-switching ASOs to cancer cells that ectopically express ASGP-R, both in vitro and in tumor mouse models. We found that ectopic expression of the major isoform ASGP-R1 H1a is sufficient to promote uptake and increase GN3-ASO potency to various degrees in four of five tested cancer cells. We show that cell-type-specific glycosylation of the receptor does not affect its activity. In vivo, GN3-conjugated ASOs specifically target subcutaneous xenograft tumors that ectopically express ASGP-R1, and modulate splicing significantly more strongly than unconjugated ASOs. Our work shows that GN3-targeting is a useful tool for proof-of-principle studies in orthotopic cancer models, until endogenous receptors are identified and exploited for efficiently targeting cancer cells

    Hybridization-mediated off-target effects of splice-switching antisense oligonucleotides

    Get PDF
    Splice-switching antisense oligonucleotides (ASOs), which bind specific RNA-target sequences and modulate pre-mRNA splicing by sterically blocking the binding of splicing factors to the pre-mRNA, are a promising therapeutic modality to treat a range of genetic diseases. ASOs are typically 15-25 nt long and considered to be highly specific towards their intended target sequence, typically elements that control exon definition and/or splice-site recognition. However, whether or not splice-modulating ASOs also induce hybridization-dependent mis-splicing of unintended targets has not been systematically studied. Here, we tested the in vitro effects of splice-modulating ASOs on 108 potential off-targets predicted on the basis of sequence complementarity, and identified 17 mis-splicing events for one of the ASOs tested. Based on analysis of data from two overlapping ASO sequences, we conclude that off-target effects are difficult to predict, and the choice of ASO chemistry influences the extent of off-target activity. The off-target events caused by the uniformly modified ASOs tested in this study were significantly reduced with mixed-chemistry ASOs of the same sequence. Furthermore, using shorter ASOs, combining two ASOs, and delivering ASOs by free uptake also reduced off-target activity. Finally, ASOs with strategically placed mismatches can be used to reduce unwanted off-target splicing events

    Synthesis of Heterogeneous Li4Ti5O12 Nanostructured Anodes with Long-Term Cycle Stability

    Get PDF
    The 0D-1D Lithium titanate (Li4Ti5O12) heterogeneous nanostructures were synthesized through the solvothermal reaction using lithium hydroxide monohydrate (Li(OH)·H2O) and protonated trititanate (H2Ti3O7) nanowires as the templates in an ethanol/water mixed solvent with subsequent heat treatment. A scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM) were used to reveal that the Li4Ti5O12 powders had 0D-1D heterogeneous nanostructures with nanoparticles (0D) on the surface of wires (1D). The composition of the mixed solvents and the volume ratio of ethanol modulated the primary particle size of the Li4Ti5O12 nanoparticles. The Li4Ti5O12 heterogeneous nanostructures exhibited good capacity retention of 125 mAh/g after 500 cycles at 1C and a superior high-rate performance of 114 mAh/g at 20C

    Uncoordinated Transcription and Compromised Muscle Function in the Lmna-Null Mouse Model of Emery-Dreifuss Muscular Dystrophy

    Get PDF
    LMNA encodes both lamin A and C: major components of the nuclear lamina. Mutations in LMNA underlie a range of tissue-specific degenerative diseases, including those that affect skeletal muscle, such as autosomal-Emery-Dreifuss muscular dystrophy (A-EDMD) and limb girdle muscular dystrophy 1B. Here, we examine the morphology and transcriptional activity of myonuclei, the structure of the myotendinous junction and the muscle contraction dynamics in the lmna-null mouse model of A-EDMD. We found that there were fewer myonuclei in lmna-null mice, of which ∼50% had morphological abnormalities. Assaying transcriptional activity by examining acetylated histone H3 and PABPN1 levels indicated that there was a lack of coordinated transcription between myonuclei lacking lamin A/C. Myonuclei with abnormal morphology and transcriptional activity were distributed along the length of the myofibre, but accumulated at the myotendinous junction. Indeed, in addition to the presence of abnormal myonuclei, the structure of the myotendinous junction was perturbed, with disorganised sarcomeres and reduced interdigitation with the tendon, together with lipid and collagen deposition. Functionally, muscle contraction became severely affected within weeks of birth, with specific force generation dropping as low as ∼65% and ∼27% of control values in the extensor digitorum longus and soleus muscles respectively. These observations illustrate the importance of lamin A/C for correct myonuclear function, which likely acts synergistically with myotendinous junction disorganisation in the development of A-EDMD, and the consequential reduction in force generation and muscle wasting

    The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration

    Get PDF
    Cells often migrate in vivo in an extracellular matrix that is intrinsically three-dimensional (3D) and the role of actin filament architecture in 3D cell migration is less well understood. Here we show that, while recently identified linkers of nucleoskeleton to cytoskeleton (LINC) complexes play a minimal role in conventional 2D migration, they play a critical role in regulating the organization of a subset of actin filament bundles – the perinuclear actin cap - connected to the nucleus through Nesprin2giant and Nesprin3 in cells in 3D collagen I matrix. Actin cap fibers prolong the nucleus and mediate the formation of pseudopodial protrusions, which drive matrix traction and 3D cell migration. Disruption of LINC complexes disorganizes the actin cap, which impairs 3D cell migration. A simple mechanical model explains why LINC complexes and the perinuclear actin cap are essential in 3D migration by providing mechanical support to the formation of pseudopodial protrusions

    Impairment of circulating endothelial progenitors in Down syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pathological angiogenesis represents a critical issue in the progression of many diseases. Down syndrome is postulated to be a systemic anti-angiogenesis disease model, possibly due to increased expression of anti-angiogenic regulators on chromosome 21. The aim of our study was to elucidate some features of circulating endothelial progenitor cells in the context of this syndrome.</p> <p>Methods</p> <p>Circulating endothelial progenitors of Down syndrome affected individuals were isolated, <it>in vitro </it>cultured and analyzed by confocal and transmission electron microscopy. ELISA was performed to measure SDF-1α plasma levels in Down syndrome and euploid individuals. Moreover, qRT-PCR was used to quantify expression levels of <it>CXCL12 </it>gene and of its receptor in progenitor cells. The functional impairment of Down progenitors was evaluated through their susceptibility to hydroperoxide-induced oxidative stress with BODIPY assay and the major vulnerability to the infection with human pathogens. The differential expression of crucial genes in Down progenitor cells was evaluated by microarray analysis.</p> <p>Results</p> <p>We detected a marked decrease of progenitors' number in young Down individuals compared to euploid, cell size increase and some major detrimental morphological changes. Moreover, Down syndrome patients also exhibited decreased SDF-1α plasma levels and their progenitors had a reduced expression of SDF-1α encoding gene and of its membrane receptor. We further demonstrated that their progenitor cells are more susceptible to hydroperoxide-induced oxidative stress and infection with Bartonella henselae. Further, we observed that most of the differentially expressed genes belong to angiogenesis, immune response and inflammation pathways, and that infected progenitors with trisomy 21 have a more pronounced perturbation of immune response genes than infected euploid cells.</p> <p>Conclusions</p> <p>Our data provide evidences for a reduced number and altered morphology of endothelial progenitor cells in Down syndrome, also showing the higher susceptibility to oxidative stress and to pathogen infection compared to euploid cells, thereby confirming the angiogenesis and immune response deficit observed in Down syndrome individuals.</p
    corecore